PREDICTION OF HEART DISEASE CLASSIFICATION BY RANDOM FOREST MODEL BASED ON GREY WOLF OPTIMIZATION ALGORITHM

L. Mei, Ning Geng, Jie Wang
{"title":"PREDICTION OF HEART DISEASE CLASSIFICATION BY RANDOM FOREST MODEL BASED ON GREY WOLF OPTIMIZATION ALGORITHM","authors":"L. Mei, Ning Geng, Jie Wang","doi":"10.52267/ijaser.2022.3401","DOIUrl":null,"url":null,"abstract":"This paper proposes a random forest model based on the gray wolf optimization algorithm to study the classification of heart disease, and compares it with the prediction results of decision tree and basic random forest. The results show that the random forest using the optimization algorithm has better prediction results, its accuracy is 5.2% higher than that of ordinary random forest, which provides a certain reference for the prediction and prevention of heart disease in the future.","PeriodicalId":153802,"journal":{"name":"International Journal of Applied Science and Engineering Review","volume":"336 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Applied Science and Engineering Review","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.52267/ijaser.2022.3401","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper proposes a random forest model based on the gray wolf optimization algorithm to study the classification of heart disease, and compares it with the prediction results of decision tree and basic random forest. The results show that the random forest using the optimization algorithm has better prediction results, its accuracy is 5.2% higher than that of ordinary random forest, which provides a certain reference for the prediction and prevention of heart disease in the future.
基于灰狼优化算法的随机森林模型心脏病分类预测
本文提出了一种基于灰狼优化算法的随机森林模型来研究心脏病的分类,并将其与决策树和基本随机森林的预测结果进行了比较。结果表明,采用优化算法的随机森林具有较好的预测效果,其准确率比普通随机森林提高了5.2%,为今后心脏病的预测和预防提供了一定的参考。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信