Qiyang Wu, T. Quach, A. Mattamana, S. Elabd, S. Dooley, J. Mccue, P. Orlando, G. Creech, W. Khalil
{"title":"Design of Wide Tuning-Range mm-Wave VCOs Using Negative Capacitance","authors":"Qiyang Wu, T. Quach, A. Mattamana, S. Elabd, S. Dooley, J. Mccue, P. Orlando, G. Creech, W. Khalil","doi":"10.1109/CSICS.2012.6340077","DOIUrl":null,"url":null,"abstract":"Negative capacitance (NC) circuits of single-ended and differential topologies are presented, analyzed and characterized. The novel NC designs extend the bandwidth of conventional NC circuits while maintaining low power consumption. To compare the performance of the designs, a figure of merit (FOM) is proposed. A power and area efficient NC scheme employing a 130 nm CMOS technology is applied to a mm-wave LC Voltage Controlled Oscillator (LC-VCO) for demonstration. The VCO tuning range is extended by employing the NC circuit to cancel the parasitic capacitance of the LC-tank; resulting in a 35% tuning range increase as compared to the reference LC-VCO circuit. The NC-based LC-VCO achieved a 27% tuning range in the Q-Band, which is the highest reported. Measured results compare closely to the theoretical analysis of the LC-VCO operating from 34.5-45.4 GHz.","PeriodicalId":290079,"journal":{"name":"2012 IEEE Compound Semiconductor Integrated Circuit Symposium (CSICS)","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE Compound Semiconductor Integrated Circuit Symposium (CSICS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CSICS.2012.6340077","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18
Abstract
Negative capacitance (NC) circuits of single-ended and differential topologies are presented, analyzed and characterized. The novel NC designs extend the bandwidth of conventional NC circuits while maintaining low power consumption. To compare the performance of the designs, a figure of merit (FOM) is proposed. A power and area efficient NC scheme employing a 130 nm CMOS technology is applied to a mm-wave LC Voltage Controlled Oscillator (LC-VCO) for demonstration. The VCO tuning range is extended by employing the NC circuit to cancel the parasitic capacitance of the LC-tank; resulting in a 35% tuning range increase as compared to the reference LC-VCO circuit. The NC-based LC-VCO achieved a 27% tuning range in the Q-Band, which is the highest reported. Measured results compare closely to the theoretical analysis of the LC-VCO operating from 34.5-45.4 GHz.