Tyler Giallanza, Erik Gabrielsen, Michael A. Taylor, Eric C. Larson, M. Thornton
{"title":"Task Value Calculus: Multi-Objective Trade off Analysis Using Multiple-Valued Decision Diagrams","authors":"Tyler Giallanza, Erik Gabrielsen, Michael A. Taylor, Eric C. Larson, M. Thornton","doi":"10.1109/ISMVL.2019.00030","DOIUrl":null,"url":null,"abstract":"Most multiple-objective optimization algorithms utilize continuous input variables. Given that many decision variables in common use-cases are discrete rather than continuous, we develop a multiple-objective optimization framework over discrete variables known as task value calculus (TVC). The underlying mathematical models in TVC utilize a multiple-valued algebraic framework where both the objective functions and the system or process structure models are represented as multiple-valued functions. TVC allows for fast multiple-objective optimization through the use of the multiple-valued decision diagram (MDD) data structure. The algorithms and structures internal to TVC are described and experimental results are provided. TVC is implemented with a simple graphical user interface making it suitable for use by both laypersons and domain experts.","PeriodicalId":329986,"journal":{"name":"2019 IEEE 49th International Symposium on Multiple-Valued Logic (ISMVL)","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 49th International Symposium on Multiple-Valued Logic (ISMVL)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISMVL.2019.00030","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Most multiple-objective optimization algorithms utilize continuous input variables. Given that many decision variables in common use-cases are discrete rather than continuous, we develop a multiple-objective optimization framework over discrete variables known as task value calculus (TVC). The underlying mathematical models in TVC utilize a multiple-valued algebraic framework where both the objective functions and the system or process structure models are represented as multiple-valued functions. TVC allows for fast multiple-objective optimization through the use of the multiple-valued decision diagram (MDD) data structure. The algorithms and structures internal to TVC are described and experimental results are provided. TVC is implemented with a simple graphical user interface making it suitable for use by both laypersons and domain experts.