Task Value Calculus: Multi-Objective Trade off Analysis Using Multiple-Valued Decision Diagrams

Tyler Giallanza, Erik Gabrielsen, Michael A. Taylor, Eric C. Larson, M. Thornton
{"title":"Task Value Calculus: Multi-Objective Trade off Analysis Using Multiple-Valued Decision Diagrams","authors":"Tyler Giallanza, Erik Gabrielsen, Michael A. Taylor, Eric C. Larson, M. Thornton","doi":"10.1109/ISMVL.2019.00030","DOIUrl":null,"url":null,"abstract":"Most multiple-objective optimization algorithms utilize continuous input variables. Given that many decision variables in common use-cases are discrete rather than continuous, we develop a multiple-objective optimization framework over discrete variables known as task value calculus (TVC). The underlying mathematical models in TVC utilize a multiple-valued algebraic framework where both the objective functions and the system or process structure models are represented as multiple-valued functions. TVC allows for fast multiple-objective optimization through the use of the multiple-valued decision diagram (MDD) data structure. The algorithms and structures internal to TVC are described and experimental results are provided. TVC is implemented with a simple graphical user interface making it suitable for use by both laypersons and domain experts.","PeriodicalId":329986,"journal":{"name":"2019 IEEE 49th International Symposium on Multiple-Valued Logic (ISMVL)","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 49th International Symposium on Multiple-Valued Logic (ISMVL)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISMVL.2019.00030","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Most multiple-objective optimization algorithms utilize continuous input variables. Given that many decision variables in common use-cases are discrete rather than continuous, we develop a multiple-objective optimization framework over discrete variables known as task value calculus (TVC). The underlying mathematical models in TVC utilize a multiple-valued algebraic framework where both the objective functions and the system or process structure models are represented as multiple-valued functions. TVC allows for fast multiple-objective optimization through the use of the multiple-valued decision diagram (MDD) data structure. The algorithms and structures internal to TVC are described and experimental results are provided. TVC is implemented with a simple graphical user interface making it suitable for use by both laypersons and domain experts.
任务价值演算:使用多值决策图的多目标权衡分析
大多数多目标优化算法使用连续输入变量。考虑到常见用例中的许多决策变量是离散的而不是连续的,我们开发了一个基于离散变量的多目标优化框架,称为任务值演算(TVC)。TVC中的基础数学模型利用多值代数框架,其中目标函数和系统或过程结构模型都表示为多值函数。TVC允许通过使用多值决策图(MDD)数据结构进行快速多目标优化。介绍了TVC的算法和内部结构,并给出了实验结果。TVC是用一个简单的图形用户界面实现的,使其适合外行和领域专家使用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信