Fault Diagnosis of Transformer Based on Random Forest

X. Chen, Hongmei Cui, Linkai Luo
{"title":"Fault Diagnosis of Transformer Based on Random Forest","authors":"X. Chen, Hongmei Cui, Linkai Luo","doi":"10.1109/ICICTA.2011.40","DOIUrl":null,"url":null,"abstract":"Fault diagnosis of transformer in power system is studied in this paper. Considering the excellent performances of Random Forest (RF) in pattern recognition, we apply RF to construct a diagnosis model to predict the situation of transformer. The experiments of fault diagnosis for some real transformers show that RF obtains a better result in prediction accuracy and stability than traditional Back Propagation neural network does. In addition, the order of influence factors given by RF is helpful in fault diagnosis.","PeriodicalId":368130,"journal":{"name":"2011 Fourth International Conference on Intelligent Computation Technology and Automation","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 Fourth International Conference on Intelligent Computation Technology and Automation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICICTA.2011.40","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 20

Abstract

Fault diagnosis of transformer in power system is studied in this paper. Considering the excellent performances of Random Forest (RF) in pattern recognition, we apply RF to construct a diagnosis model to predict the situation of transformer. The experiments of fault diagnosis for some real transformers show that RF obtains a better result in prediction accuracy and stability than traditional Back Propagation neural network does. In addition, the order of influence factors given by RF is helpful in fault diagnosis.
基于随机森林的变压器故障诊断
本文对电力系统中变压器的故障诊断进行了研究。考虑到随机森林在模式识别方面的优异性能,我们将随机森林应用于变压器故障诊断模型的构建。对实际变压器的故障诊断实验表明,该方法在预测精度和稳定性上都优于传统的反向传播神经网络。此外,射频分析给出的影响因素排序有助于故障诊断。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信