A Fractal based Machine Learning Method for Automatic Detection of Epileptic Seizures using EEG

G. Sharma, A. Joshi
{"title":"A Fractal based Machine Learning Method for Automatic Detection of Epileptic Seizures using EEG","authors":"G. Sharma, A. Joshi","doi":"10.1109/ICEET56468.2022.10007280","DOIUrl":null,"url":null,"abstract":"Epilepsy is one of the most common and chronic brain disorders that causes recurrent seizures. In this paper, a machine learning method utilizing non-linear features and a Support vector machine (SVM) classifier is proposed for the automatic detection of epileptic seizures using electroencephalographic (EEG) signals. In this proposed model, Hurst exponent and logarithmic Higuchi fractal dimension (HFD) non-linear features are extracted from EEG signals which are then classified using SVM and K-nearest neighbor (KNN) classifiers. For the model’s implementation and performance evaluation, a publicly available CHB-MIT EEG dataset is used. The proposed model uses the Hurst component, logarithmic HFD, and SVM classifier, resulting in an average accuracy of 99.81%, Recall 100%, and TNR 0.99. Similarly, the proposed model utilizing the Hurst component, logarithmic HFT, and KNN classifier resulted in an accuracy of 93.21%, recall 92.56%, and Tnr 0.92. This automated and highly accurate model can be implemented in remote-based applications using the Internet of Medical Things (IoMT) framework.","PeriodicalId":241355,"journal":{"name":"2022 International Conference on Engineering and Emerging Technologies (ICEET)","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 International Conference on Engineering and Emerging Technologies (ICEET)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICEET56468.2022.10007280","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Epilepsy is one of the most common and chronic brain disorders that causes recurrent seizures. In this paper, a machine learning method utilizing non-linear features and a Support vector machine (SVM) classifier is proposed for the automatic detection of epileptic seizures using electroencephalographic (EEG) signals. In this proposed model, Hurst exponent and logarithmic Higuchi fractal dimension (HFD) non-linear features are extracted from EEG signals which are then classified using SVM and K-nearest neighbor (KNN) classifiers. For the model’s implementation and performance evaluation, a publicly available CHB-MIT EEG dataset is used. The proposed model uses the Hurst component, logarithmic HFD, and SVM classifier, resulting in an average accuracy of 99.81%, Recall 100%, and TNR 0.99. Similarly, the proposed model utilizing the Hurst component, logarithmic HFT, and KNN classifier resulted in an accuracy of 93.21%, recall 92.56%, and Tnr 0.92. This automated and highly accurate model can be implemented in remote-based applications using the Internet of Medical Things (IoMT) framework.
基于分形的脑电癫痫发作自动检测机器学习方法
癫痫是引起反复发作的最常见的慢性脑部疾病之一。本文提出了一种利用非线性特征和支持向量机(SVM)分类器的机器学习方法,用于利用脑电图(EEG)信号自动检测癫痫发作。在该模型中,从脑电信号中提取Hurst指数和对数Higuchi分形维数(HFD)非线性特征,然后使用SVM和k -最近邻(KNN)分类器对其进行分类。对于模型的实现和性能评估,使用了公开可用的CHB-MIT EEG数据集。该模型采用Hurst分量、对数HFD和SVM分类器,平均准确率为99.81%,召回率为100%,TNR为0.99。同样,利用Hurst分量、对数HFT和KNN分类器所提出的模型的准确率为93.21%,召回率为92.56%,Tnr为0.92。这种自动化和高度精确的模型可以使用医疗物联网(IoMT)框架在基于远程的应用中实现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信