Deming Zhang, L. Zeng, Youguang Zhang, Weisheng Zhao, Jacques-Olivier Klein
{"title":"Stochastic spintronic device based synapses and spiking neurons for neuromorphic computation","authors":"Deming Zhang, L. Zeng, Youguang Zhang, Weisheng Zhao, Jacques-Olivier Klein","doi":"10.1145/2950067.2950105","DOIUrl":null,"url":null,"abstract":"Spintronics devices such as magnetic tunnel junction (MTJ) have been investigated for the neuromorphic computation. However, there are still a number of challenges for hardware implementation of the bio-inspired computing, for instance how to use the binary MTJ to mimic the analog synapse. In this paper, a compound scheme is firstly proposed, which employs multiple MTJs connected in parallel operating in the stochastic regime to jointly behave a single synapse, aiming to achieve an analog-like weight spectrum. To further exploit its stochastic switching property for the bio-inspired computing, we present a MTJ based stochastic spiking neuron (SSN) circuit, which can also realize the neural rate coding scheme. A case study is made on the MNIST database for handwritten digital recognition with the proposed compound magnetoresistive synapse (CMS) and SSN. System-level simulation results show that the proposed CMS and SSN can implement neuromorphic computation with high accuracy and immunity to device variation.","PeriodicalId":213559,"journal":{"name":"2016 IEEE/ACM International Symposium on Nanoscale Architectures (NANOARCH)","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"33","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE/ACM International Symposium on Nanoscale Architectures (NANOARCH)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2950067.2950105","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 33
Abstract
Spintronics devices such as magnetic tunnel junction (MTJ) have been investigated for the neuromorphic computation. However, there are still a number of challenges for hardware implementation of the bio-inspired computing, for instance how to use the binary MTJ to mimic the analog synapse. In this paper, a compound scheme is firstly proposed, which employs multiple MTJs connected in parallel operating in the stochastic regime to jointly behave a single synapse, aiming to achieve an analog-like weight spectrum. To further exploit its stochastic switching property for the bio-inspired computing, we present a MTJ based stochastic spiking neuron (SSN) circuit, which can also realize the neural rate coding scheme. A case study is made on the MNIST database for handwritten digital recognition with the proposed compound magnetoresistive synapse (CMS) and SSN. System-level simulation results show that the proposed CMS and SSN can implement neuromorphic computation with high accuracy and immunity to device variation.