BigBlueBot

Justin D. Weisz, Mohit Jain, N. Joshi, James Johnson, Ingrid Lange
{"title":"BigBlueBot","authors":"Justin D. Weisz, Mohit Jain, N. Joshi, James Johnson, Ingrid Lange","doi":"10.1145/3301275.3302290","DOIUrl":null,"url":null,"abstract":"Chatbots are becoming quite popular, with many brands developing conversational experiences using platforms such as IBM's Watson Assistant and Facebook Messenger. However, previous research reveals that users' expectations of what conversational agents can understand and do far outpace their actual technical capabilities. Our work seeks to bridge the gap between these expectations and reality by designing a fun learning experience with several goals: explaining how chatbots work by mapping utterances to a set of intents, teaching strategies for avoiding conversational breakdowns, and increasing desire to use chatbots by creating feelings of empathy toward them. Our experience, called BigBlueBot, consists of interactions with two chatbots in which breakdowns occur and the user (or chatbot) must recover using one or more repair strategies. In a Mechanical Turk evaluation (N=88), participants learned strategies for having successful human-agent interactions, reported feelings of empathy toward the chatbots, and expressed a desire to interact with chatbots in the future.","PeriodicalId":153096,"journal":{"name":"Proceedings of the 24th International Conference on Intelligent User Interfaces","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"25","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 24th International Conference on Intelligent User Interfaces","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3301275.3302290","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 25

Abstract

Chatbots are becoming quite popular, with many brands developing conversational experiences using platforms such as IBM's Watson Assistant and Facebook Messenger. However, previous research reveals that users' expectations of what conversational agents can understand and do far outpace their actual technical capabilities. Our work seeks to bridge the gap between these expectations and reality by designing a fun learning experience with several goals: explaining how chatbots work by mapping utterances to a set of intents, teaching strategies for avoiding conversational breakdowns, and increasing desire to use chatbots by creating feelings of empathy toward them. Our experience, called BigBlueBot, consists of interactions with two chatbots in which breakdowns occur and the user (or chatbot) must recover using one or more repair strategies. In a Mechanical Turk evaluation (N=88), participants learned strategies for having successful human-agent interactions, reported feelings of empathy toward the chatbots, and expressed a desire to interact with chatbots in the future.
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信