Machine Learning-based Model for Defining Circuit-level Parameters of VCSEL

I. Khan, Lorenzo Tunesi, M. U. Masood, E. Ghillino, V. Curri, A. Carena, P. Bardella
{"title":"Machine Learning-based Model for Defining Circuit-level Parameters of VCSEL","authors":"I. Khan, Lorenzo Tunesi, M. U. Masood, E. Ghillino, V. Curri, A. Carena, P. Bardella","doi":"10.23919/softcom55329.2022.9911489","DOIUrl":null,"url":null,"abstract":"Recently, many computationally efficient models have been introduced to accurately define the static and dynamic Vertical Cavity Surface Emitting Laser (VCSEL) behaviors. However, in these models, many physical parameters must be appropriately set to reproduce existing laser sources' behavior accurately. The extraction of these unknown physical parameters from experimental curves is generally time-consuming and relies mainly on trial and error approaches or regression analysis, requiring extra effort. In this scenario, we propose a machine learning-based solution to the problem, which can effectively extract the required VCSEL parameters from experimental data in real-time. The proposed approach predicts the parameters exploiting the light-current curve and small-signal modulation responses with two steps at constant and variable temperature, respectively. Promising results are achieved in terms of relative prediction error.","PeriodicalId":261625,"journal":{"name":"2022 International Conference on Software, Telecommunications and Computer Networks (SoftCOM)","volume":"78 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 International Conference on Software, Telecommunications and Computer Networks (SoftCOM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/softcom55329.2022.9911489","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Recently, many computationally efficient models have been introduced to accurately define the static and dynamic Vertical Cavity Surface Emitting Laser (VCSEL) behaviors. However, in these models, many physical parameters must be appropriately set to reproduce existing laser sources' behavior accurately. The extraction of these unknown physical parameters from experimental curves is generally time-consuming and relies mainly on trial and error approaches or regression analysis, requiring extra effort. In this scenario, we propose a machine learning-based solution to the problem, which can effectively extract the required VCSEL parameters from experimental data in real-time. The proposed approach predicts the parameters exploiting the light-current curve and small-signal modulation responses with two steps at constant and variable temperature, respectively. Promising results are achieved in terms of relative prediction error.
基于机器学习的VCSEL电路级参数定义模型
近年来,人们引入了许多计算效率高的模型来精确定义垂直腔面发射激光(VCSEL)的静态和动态行为。然而,在这些模型中,必须适当设置许多物理参数才能准确地再现现有激光源的行为。从实验曲线中提取这些未知的物理参数通常是耗时的,主要依靠试错法或回归分析,需要额外的努力。在这种情况下,我们提出了一种基于机器学习的解决方案,该方案可以实时有效地从实验数据中提取所需的VCSEL参数。该方法分别利用恒定温度和变温度下的光电流曲线和小信号调制响应两步预测参数。在相对预测误差方面取得了令人满意的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信