Feature Extraction of Colorectal Endoscopic Images for Computer-Aided Diagnosis with CNN

Takumi Okamoto, Masayuki Odagawa, T. Koide, Shinji Tanaka, Toru Tamaki, B. Raytchev, K. Kaneda, S. Yoshida, H. Mieno
{"title":"Feature Extraction of Colorectal Endoscopic Images for Computer-Aided Diagnosis with CNN","authors":"Takumi Okamoto, Masayuki Odagawa, T. Koide, Shinji Tanaka, Toru Tamaki, B. Raytchev, K. Kaneda, S. Yoshida, H. Mieno","doi":"10.1109/ISDCS.2019.8719104","DOIUrl":null,"url":null,"abstract":"This paper introduces a feature extraction method for Narrow-Band Imaging (NBI) colorectal endoscopic images with Convolutional Neural Network (CNN) for Support Vector Machine (SVM) as a Computer-Aided Diagnosis (CAD) system. The proposed method using the result of pre-learned CNN as a feature extraction module on Bag-of-Features (BoF) framework and SVM inputs the result for classification. We estimated identification accuracy compare with the BoF framework and the proposed method. As an estimation result, we achieved that the proposed method can identify cancer or not with about over 90% accuracy.","PeriodicalId":293660,"journal":{"name":"2019 2nd International Symposium on Devices, Circuits and Systems (ISDCS)","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 2nd International Symposium on Devices, Circuits and Systems (ISDCS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISDCS.2019.8719104","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

This paper introduces a feature extraction method for Narrow-Band Imaging (NBI) colorectal endoscopic images with Convolutional Neural Network (CNN) for Support Vector Machine (SVM) as a Computer-Aided Diagnosis (CAD) system. The proposed method using the result of pre-learned CNN as a feature extraction module on Bag-of-Features (BoF) framework and SVM inputs the result for classification. We estimated identification accuracy compare with the BoF framework and the proposed method. As an estimation result, we achieved that the proposed method can identify cancer or not with about over 90% accuracy.
基于CNN计算机辅助诊断的结肠内镜图像特征提取
本文介绍了一种基于卷积神经网络(CNN)支持向量机(SVM)作为计算机辅助诊断(CAD)系统的窄带成像(NBI)结肠内镜图像特征提取方法。该方法将CNN预学习的结果作为特征提取模块,在特征袋(Bag-of-Features, BoF)框架上进行特征提取,并将结果输入SVM进行分类。通过与BoF框架和所提方法的比较,估计了识别精度。作为估计结果,我们实现了所提出的方法可以识别癌症或非癌症,准确率在90%以上。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信