A heterogeneous microprocessor for energy-scalable sensor inference using genetic programming

Hongyang Jia, Jie Lu, N. Jha, Naveen Yerma
{"title":"A heterogeneous microprocessor for energy-scalable sensor inference using genetic programming","authors":"Hongyang Jia, Jie Lu, N. Jha, Naveen Yerma","doi":"10.23919/VLSIC.2017.8008535","DOIUrl":null,"url":null,"abstract":"We present a heterogeneous microprocessor for IoE sensor-inference applications, which achieves programmability required for feature extraction strictly using application data. Acceleration, though key for energy efficiency, poses substantial programmability challenges. These are overcome by exploiting genetic programming (GP) for automatic program synthesis. GP yields highly structured models of computation, enabling: (1) high degree of specialization; (2) systematic mapping of programs to the accelerator; and (3) energy scalability via user-controllable approximation. The microprocessor (130nm) achieves 325×/156× energy reduction, and farther 20x/9x energy scalability, for programmable feature extraction in two medical-sensor applications (seizure/arrhythmia-detection) vs. GP-model execution on CPU. The energy efficiency is 220 GOPS/W, near that of fixed-function accelerators, exceeding typical programmable accelerators.","PeriodicalId":176340,"journal":{"name":"2017 Symposium on VLSI Circuits","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 Symposium on VLSI Circuits","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/VLSIC.2017.8008535","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

We present a heterogeneous microprocessor for IoE sensor-inference applications, which achieves programmability required for feature extraction strictly using application data. Acceleration, though key for energy efficiency, poses substantial programmability challenges. These are overcome by exploiting genetic programming (GP) for automatic program synthesis. GP yields highly structured models of computation, enabling: (1) high degree of specialization; (2) systematic mapping of programs to the accelerator; and (3) energy scalability via user-controllable approximation. The microprocessor (130nm) achieves 325×/156× energy reduction, and farther 20x/9x energy scalability, for programmable feature extraction in two medical-sensor applications (seizure/arrhythmia-detection) vs. GP-model execution on CPU. The energy efficiency is 220 GOPS/W, near that of fixed-function accelerators, exceeding typical programmable accelerators.
基于遗传规划的能量可伸缩传感器推理异构微处理器
我们提出了一种用于IoE传感器推理应用的异构微处理器,它实现了严格使用应用数据进行特征提取所需的可编程性。加速虽然是提高能源效率的关键,但对可编程性提出了重大挑战。利用遗传编程(GP)进行自动程序合成可以克服这些问题。GP产生高度结构化的计算模型,从而实现:(1)高度专业化;(2)系统地将程序映射到加速器;(3)通过用户可控逼近实现能量可扩展性。微处理器(130nm)实现了325x / 156x的能量降低,并进一步实现了20x/9x的能量可扩展性,用于两种医疗传感器应用(癫痫/心律失常检测)的可编程特征提取,而不是在CPU上执行gp模型。能量效率为220 GOPS/W,接近固定功能加速器的能量效率,超过典型的可编程加速器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信