High power laser applications in Nippon Steel Corporation

K. Minamida
{"title":"High power laser applications in Nippon Steel Corporation","authors":"K. Minamida","doi":"10.1117/12.497732","DOIUrl":null,"url":null,"abstract":"The full-scale use of lasers in the steel industry began 25 years ago with their applications as controllable light sources. The laser systems contribute to increase efficiency and quality of the steel making processes, and also save energy of resources and labor. Laser applications in the steel making process generally require high input energy, however, it is essential to consider the interaction between the laser beam and materials. In particular, the reflectivity of the laser beam on the surface of material and the quantity of the laser-induced plasma are critical parameters for high efficient processes. We newly developed methods and systems of high power 45 kW CO2 laser welding of hot steel specimens with their applications as welding characteristics of hot steel specimens that temperature is about 1000 degree C, have been examined. Using laser induced plasma as a secondary heat source, the penetration depth improves about 30% compared to that at room temperature. The bead width is also enlarged by 10%. The maximum depth is 38 mm at 1m/min welding velocity at 40 kW. A beam weaving method is adopted for further enlargement of bead width without degrading fusion efficiency. It is also effective for suppressing the bead depth deviation. Additionally, several new applications, for example, new type all-laser-welded honeycomb panels for high- speed civil transport, will be talked.","PeriodicalId":159280,"journal":{"name":"International Congress on Laser Advanced Materials Processing","volume":"316 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Congress on Laser Advanced Materials Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.497732","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

The full-scale use of lasers in the steel industry began 25 years ago with their applications as controllable light sources. The laser systems contribute to increase efficiency and quality of the steel making processes, and also save energy of resources and labor. Laser applications in the steel making process generally require high input energy, however, it is essential to consider the interaction between the laser beam and materials. In particular, the reflectivity of the laser beam on the surface of material and the quantity of the laser-induced plasma are critical parameters for high efficient processes. We newly developed methods and systems of high power 45 kW CO2 laser welding of hot steel specimens with their applications as welding characteristics of hot steel specimens that temperature is about 1000 degree C, have been examined. Using laser induced plasma as a secondary heat source, the penetration depth improves about 30% compared to that at room temperature. The bead width is also enlarged by 10%. The maximum depth is 38 mm at 1m/min welding velocity at 40 kW. A beam weaving method is adopted for further enlargement of bead width without degrading fusion efficiency. It is also effective for suppressing the bead depth deviation. Additionally, several new applications, for example, new type all-laser-welded honeycomb panels for high- speed civil transport, will be talked.
高功率激光在新日铁的应用
激光在钢铁行业的全面应用始于25年前,当时激光被用作可控光源。激光系统有助于提高炼钢过程的效率和质量,也节省了资源和劳动力的能源。激光在炼钢过程中的应用通常需要高输入能量,但必须考虑激光束与材料之间的相互作用。特别是,激光在材料表面的反射率和激光诱导等离子体的数量是实现高效工艺的关键参数。研究了新开发的45kw大功率CO2激光焊接热钢试样的方法和系统,并对其在温度为1000℃左右的热钢试样的焊接特性进行了研究。采用激光诱导等离子体作为二次热源,穿透深度比室温下提高了30%左右。珠宽也扩大了10%。当焊接速度为1m/min,功率为40kw时,最大深度为38mm。采用束织法在不降低熔接效率的前提下进一步扩大熔头宽度。对抑制焊头深度偏差也有较好的效果。此外,还将介绍用于高速民用交通的新型全激光焊接蜂窝板等几种新应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信