An in-situ resistance measurement to extract IMC resistivity and kinetic parameter of alternative metallurgies for 3D stacking

L. Hou, J. Derakhshandeh, A. Radisic, M. Honore, J. de Coster, V. Cherman, P. Bex, K. Rebibis, G. Beyer, E. Beyne, I. De Wolf
{"title":"An in-situ resistance measurement to extract IMC resistivity and kinetic parameter of alternative metallurgies for 3D stacking","authors":"L. Hou, J. Derakhshandeh, A. Radisic, M. Honore, J. de Coster, V. Cherman, P. Bex, K. Rebibis, G. Beyer, E. Beyne, I. De Wolf","doi":"10.1109/ESTC.2018.8546500","DOIUrl":null,"url":null,"abstract":"In this work, an in-situ resistance measurement method is proposed to investigate the interfacial solid state reaction of alternative metallurgies, such as Ni and Cu/Ni as UBM materials, with Sn solders. The electrical properties of formed IMC phases for different metallurgies systems are extracted and discussed. Kinetic parameters, such as activation energy and power factor, of Ni/Sn and Cu/Ni/Sn solid-state reaction are extracted from in-situ resistance measurement. Power factor of Ni/Sn and Cu/Ni/Sn kinetic reaction indicate that the IMC evolution behaviors involve bulk diffusion-controlled (the time exponent n = 0.5) for Ni/Sn, while the growth evolution of (Cu,Ni)6Sn5 in Cu/Ni/Sn solid state reaction involves grain-boundary diffusion controlled (the time exponent n = 0.33) from in-situ resistance measurement. This proposed in-situ measurement methodology has the advantages of being quick and accurate to understand and characterize the reaction and phase formation between UBM and solder materials for 3D applications.","PeriodicalId":198238,"journal":{"name":"2018 7th Electronic System-Integration Technology Conference (ESTC)","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 7th Electronic System-Integration Technology Conference (ESTC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ESTC.2018.8546500","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

In this work, an in-situ resistance measurement method is proposed to investigate the interfacial solid state reaction of alternative metallurgies, such as Ni and Cu/Ni as UBM materials, with Sn solders. The electrical properties of formed IMC phases for different metallurgies systems are extracted and discussed. Kinetic parameters, such as activation energy and power factor, of Ni/Sn and Cu/Ni/Sn solid-state reaction are extracted from in-situ resistance measurement. Power factor of Ni/Sn and Cu/Ni/Sn kinetic reaction indicate that the IMC evolution behaviors involve bulk diffusion-controlled (the time exponent n = 0.5) for Ni/Sn, while the growth evolution of (Cu,Ni)6Sn5 in Cu/Ni/Sn solid state reaction involves grain-boundary diffusion controlled (the time exponent n = 0.33) from in-situ resistance measurement. This proposed in-situ measurement methodology has the advantages of being quick and accurate to understand and characterize the reaction and phase formation between UBM and solder materials for 3D applications.
采用原位电阻测量方法提取可选冶金材料三维堆垛的IMC电阻率和动力学参数
在这项工作中,提出了一种原位电阻测量方法来研究替代冶金材料(如Ni和Cu/Ni作为UBM材料)与Sn焊料的界面固相反应。对不同冶金体系形成的IMC相的电学性能进行了提取和讨论。通过原位电阻测量,提取了Ni/Sn和Cu/Ni/Sn固态反应的活化能和功率因数等动力学参数。Ni/Sn和Cu/Ni/Sn动力学的功率因数表明,Ni /Sn的IMC演化行为为体扩散控制(时间指数n = 0.5),而Cu/Ni/Sn固相反应中(Cu,Ni)6Sn5的生长演化为晶界扩散控制(时间指数n = 0.33)。提出的原位测量方法具有快速准确地理解和表征三维应用中UBM和焊料材料之间的反应和相形成的优点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信