A soft computing approach for the design of novel pharmaceuticals

R. Kewley, M. Embrechts, C. Breneman
{"title":"A soft computing approach for the design of novel pharmaceuticals","authors":"R. Kewley, M. Embrechts, C. Breneman","doi":"10.1109/SMCIA.1999.782700","DOIUrl":null,"url":null,"abstract":"The pace of technological advancement in today's society has generated an enormous demand for methods facilitating the intelligent design of new pharmaceuticals, chemical compounds, and materials. The authors have developed computationally intelligent data mining and molecular modeling technologies for the automated design and understanding of complex molecular structures. The Transferable Atom Equivalent methodology for calculating derived molecular properties generates a large set of potential predictors for a set of molecules. Novel neural network based \"data strip mining\" techniques extract predictive models from this set. These models may be used to screen candidate pharmaceuticals prior to expensive and time consuming laboratory testing.","PeriodicalId":222278,"journal":{"name":"SMCia/99 Proceedings of the 1999 IEEE Midnight - Sun Workshop on Soft Computing Methods in Industrial Applications (Cat. No.99EX269)","volume":"42 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1999-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SMCia/99 Proceedings of the 1999 IEEE Midnight - Sun Workshop on Soft Computing Methods in Industrial Applications (Cat. No.99EX269)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SMCIA.1999.782700","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The pace of technological advancement in today's society has generated an enormous demand for methods facilitating the intelligent design of new pharmaceuticals, chemical compounds, and materials. The authors have developed computationally intelligent data mining and molecular modeling technologies for the automated design and understanding of complex molecular structures. The Transferable Atom Equivalent methodology for calculating derived molecular properties generates a large set of potential predictors for a set of molecules. Novel neural network based "data strip mining" techniques extract predictive models from this set. These models may be used to screen candidate pharmaceuticals prior to expensive and time consuming laboratory testing.
新型药物设计的软计算方法
当今社会技术进步的步伐对促进新药物、化合物和材料的智能设计的方法产生了巨大的需求。作者开发了计算智能数据挖掘和分子建模技术,用于复杂分子结构的自动化设计和理解。用于计算衍生分子性质的可转移原子等效方法为一组分子生成了一组潜在的预测因子。新的基于神经网络的“数据条形挖掘”技术从这些数据集中提取预测模型。这些模型可用于在昂贵和耗时的实验室测试之前筛选候选药物。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信