In-memory flow-based stochastic computing on memristor crossbars using bit-vector stochastic streams

Sunny Raj, Dwaipayan Chakraborty, Sumit Kumar Jha
{"title":"In-memory flow-based stochastic computing on memristor crossbars using bit-vector stochastic streams","authors":"Sunny Raj, Dwaipayan Chakraborty, Sumit Kumar Jha","doi":"10.1109/NANO.2017.8117440","DOIUrl":null,"url":null,"abstract":"Nanoscale memristor crossbars provide a natural fabric for in-memory computing and have recently been shown to efficiently perform exact logical operations by exploiting the flow of current through crossbar interconnects. In this paper, we extend the flow-based crossbar computing approach to approximate stochastic computing. First, we show that the natural flow of current through probabilistically-switching memristive nano-switches in crossbars can be used to perform approximate stochastic computing. Second, we demonstrate that optimizing the approximate stochastic computations in terms of the number of required random bits leads to stochastic computing using bit-vector stochastic streams of varying bit-widths — a hybrid of the traditional full-width bit-vector computing approach and the traditional bit-stream stochastic computing methodology. This hybrid approach based on bit-vector stochastic streams of different bit-widths can be efficiently implemented using an in-memory nanoscale memristive crossbar computing framework.","PeriodicalId":292399,"journal":{"name":"2017 IEEE 17th International Conference on Nanotechnology (IEEE-NANO)","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE 17th International Conference on Nanotechnology (IEEE-NANO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NANO.2017.8117440","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

Nanoscale memristor crossbars provide a natural fabric for in-memory computing and have recently been shown to efficiently perform exact logical operations by exploiting the flow of current through crossbar interconnects. In this paper, we extend the flow-based crossbar computing approach to approximate stochastic computing. First, we show that the natural flow of current through probabilistically-switching memristive nano-switches in crossbars can be used to perform approximate stochastic computing. Second, we demonstrate that optimizing the approximate stochastic computations in terms of the number of required random bits leads to stochastic computing using bit-vector stochastic streams of varying bit-widths — a hybrid of the traditional full-width bit-vector computing approach and the traditional bit-stream stochastic computing methodology. This hybrid approach based on bit-vector stochastic streams of different bit-widths can be efficiently implemented using an in-memory nanoscale memristive crossbar computing framework.
基于位矢量随机流的记忆电阻横条内存流随机计算
纳米级忆阻器横条为内存计算提供了一种天然的结构,并且最近被证明可以有效地执行精确的逻辑运算,利用通过横条互连的电流。本文将基于流的横杆计算方法推广到近似随机计算。首先,我们证明了自然电流通过概率开关记忆纳米开关在横杆可以用来执行近似随机计算。其次,我们证明了根据所需随机比特的数量优化近似随机计算导致使用可变比特宽度的比特向量随机流进行随机计算-传统全宽度比特向量计算方法和传统比特流随机计算方法的混合。这种基于不同位宽的位矢量随机流的混合方法可以在内存纳米级忆阻交叉计算框架中有效地实现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信