{"title":"Synchronization and pattern formation in diffusively coupled systems","authors":"M. Arcak","doi":"10.1109/CDC.2012.6425824","DOIUrl":null,"url":null,"abstract":"We discuss spatially distributed networks that exhibit a diffusive coupling structure, common in biomolecular networks and multi-agent systems. We first review conditions that guarantee spatial homogeneity of the solutions of these systems, referred to as “synchrony.” We next point to structural system properties that allow diffusion-driven instability - a phenomenon critical to pattern formation in biology - and show that an analogous instability mechanism exists in multi-agent systems. The results reviewed in the paper also demonstrate the role played by the Laplacian eigenvalues in determining the dynamical properties of diffusively coupled systems. We conclude with a discussion of how these eigenvalues can be assigned with a design of node and edge weights of a graph, and present a formation control example.","PeriodicalId":312426,"journal":{"name":"2012 IEEE 51st IEEE Conference on Decision and Control (CDC)","volume":"321 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE 51st IEEE Conference on Decision and Control (CDC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CDC.2012.6425824","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13
Abstract
We discuss spatially distributed networks that exhibit a diffusive coupling structure, common in biomolecular networks and multi-agent systems. We first review conditions that guarantee spatial homogeneity of the solutions of these systems, referred to as “synchrony.” We next point to structural system properties that allow diffusion-driven instability - a phenomenon critical to pattern formation in biology - and show that an analogous instability mechanism exists in multi-agent systems. The results reviewed in the paper also demonstrate the role played by the Laplacian eigenvalues in determining the dynamical properties of diffusively coupled systems. We conclude with a discussion of how these eigenvalues can be assigned with a design of node and edge weights of a graph, and present a formation control example.