Erik Trickel, Fabio Pagani, Chang Zhu, Lukas Dresel, G. Vigna, Christopher Kruegel, Ruoyu Wang, Tiffany Bao, Yan Shoshitaishvili, Adam Doupé
{"title":"Toss a Fault to Your Witcher: Applying Grey-box Coverage-Guided Mutational Fuzzing to Detect SQL and Command Injection Vulnerabilities","authors":"Erik Trickel, Fabio Pagani, Chang Zhu, Lukas Dresel, G. Vigna, Christopher Kruegel, Ruoyu Wang, Tiffany Bao, Yan Shoshitaishvili, Adam Doupé","doi":"10.1109/SP46215.2023.10179317","DOIUrl":null,"url":null,"abstract":"Black-box web application vulnerability scanners attempt to automatically identify vulnerabilities in web applications without access to the source code. However, they do so by using a manually curated list of vulnerability-inducing inputs, which significantly reduces the ability of a black-box scanner to explore the web application’s input space and which can cause false negatives. In addition, black-box scanners must attempt to infer that a vulnerability was triggered, which causes false positives.To overcome these limitations, we propose Witcher, a novel web vulnerability discovery framework that is inspired by grey-box coverage-guided fuzzing. Witcher implements the concept of fault escalation to detect both SQL and command injection vulnerabilities. Additionally, Witcher captures coverage information and creates output-derived input guidance to focus the input generation and, therefore, to increase the state-space exploration of the web application. On a dataset of 18 web applications written in PHP, Python, Node.js, Java, Ruby, and C, 13 of which had known vulnerabilities, Witcher was able to find 23 of the 36 known vulnerabilities (64%), and additionally found 67 previously unknown vulnerabilities, 4 of which received CVE numbers. In our experiments, Witcher outperformed state of the art scanners both in terms of number of vulnerabilities found, but also in terms of coverage of web applications.","PeriodicalId":439989,"journal":{"name":"2023 IEEE Symposium on Security and Privacy (SP)","volume":"288 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE Symposium on Security and Privacy (SP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SP46215.2023.10179317","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8
Abstract
Black-box web application vulnerability scanners attempt to automatically identify vulnerabilities in web applications without access to the source code. However, they do so by using a manually curated list of vulnerability-inducing inputs, which significantly reduces the ability of a black-box scanner to explore the web application’s input space and which can cause false negatives. In addition, black-box scanners must attempt to infer that a vulnerability was triggered, which causes false positives.To overcome these limitations, we propose Witcher, a novel web vulnerability discovery framework that is inspired by grey-box coverage-guided fuzzing. Witcher implements the concept of fault escalation to detect both SQL and command injection vulnerabilities. Additionally, Witcher captures coverage information and creates output-derived input guidance to focus the input generation and, therefore, to increase the state-space exploration of the web application. On a dataset of 18 web applications written in PHP, Python, Node.js, Java, Ruby, and C, 13 of which had known vulnerabilities, Witcher was able to find 23 of the 36 known vulnerabilities (64%), and additionally found 67 previously unknown vulnerabilities, 4 of which received CVE numbers. In our experiments, Witcher outperformed state of the art scanners both in terms of number of vulnerabilities found, but also in terms of coverage of web applications.