Neuromuscular disease diagnosis of SVM, K-NN and DA algorithm based classification part-II

Hanife Küçük, Ilyas Eminoglu
{"title":"Neuromuscular disease diagnosis of SVM, K-NN and DA algorithm based classification part-II","authors":"Hanife Küçük, Ilyas Eminoglu","doi":"10.1109/TIPTEKNO.2016.7863105","DOIUrl":null,"url":null,"abstract":"This study includes a classification structure consisting of second part for the automatic diagnosis of the neuromuscular disease of ALS (Amyotrophic Lateral Sclerosis) and myopathy being a muscular disease. In this study feature vectors containing time domain parameters, frequency domain parameters (a total of 25 feature vectors) as well as feature vectors composed of combination of these parameters were used. In the classification stage, Support Vector Machines (SVM), K-Nearest Neighbors (K-NN) and Discriminant Analysis (DA) algorithms were employed. Experimental results showed that the multiple feature vectors proved to be more successful compared to the individual feature vectors. It is understood with this study; the classification performance depends highly on separability of feature vectors between different classes.","PeriodicalId":431660,"journal":{"name":"2016 Medical Technologies National Congress (TIPTEKNO)","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 Medical Technologies National Congress (TIPTEKNO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TIPTEKNO.2016.7863105","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

This study includes a classification structure consisting of second part for the automatic diagnosis of the neuromuscular disease of ALS (Amyotrophic Lateral Sclerosis) and myopathy being a muscular disease. In this study feature vectors containing time domain parameters, frequency domain parameters (a total of 25 feature vectors) as well as feature vectors composed of combination of these parameters were used. In the classification stage, Support Vector Machines (SVM), K-Nearest Neighbors (K-NN) and Discriminant Analysis (DA) algorithms were employed. Experimental results showed that the multiple feature vectors proved to be more successful compared to the individual feature vectors. It is understood with this study; the classification performance depends highly on separability of feature vectors between different classes.
基于SVM、K-NN和DA算法的神经肌肉疾病诊断分类第二部分
本研究包括由第二部分组成的分类结构,用于肌萎缩性侧索硬化症(ALS)神经肌肉疾病的自动诊断,肌病是一种肌肉疾病。本研究使用了包含时域参数、频域参数(共25个特征向量)的特征向量,以及这些参数组合而成的特征向量。在分类阶段,使用了支持向量机(SVM)、k -近邻(K-NN)和判别分析(DA)算法。实验结果表明,多特征向量比单个特征向量更有效。通过这项研究可以理解;分类性能在很大程度上取决于不同类别之间特征向量的可分性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信