Population-based functional template priors for regularized PET reconstruction

Philip Novosad, A. Reader
{"title":"Population-based functional template priors for regularized PET reconstruction","authors":"Philip Novosad, A. Reader","doi":"10.1109/NSSMIC.2014.7430938","DOIUrl":null,"url":null,"abstract":"We outline a possible method for exploiting population-based data for regularization in iterative PET reconstruction. Multi-modal and high-resolution mean shape templates are derived from a set of co-registered PET-MR images. The functional component of the template, representing the average radiotracer distribution among the images in the set, is used in a Bayesian reconstruction scheme for regularization of a given image. Unlike conventional anatomical-based priors, our proposed method makes no assumptions about relations between anatomy and function. Instead of regularizing based on differences between anatomy and function, we regularize based on differences between a mean functional image and a given functional image. Our proposed method outperforms both conventional MLEM and quadratic priors.","PeriodicalId":144711,"journal":{"name":"2014 IEEE Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC)","volume":"49 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NSSMIC.2014.7430938","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

We outline a possible method for exploiting population-based data for regularization in iterative PET reconstruction. Multi-modal and high-resolution mean shape templates are derived from a set of co-registered PET-MR images. The functional component of the template, representing the average radiotracer distribution among the images in the set, is used in a Bayesian reconstruction scheme for regularization of a given image. Unlike conventional anatomical-based priors, our proposed method makes no assumptions about relations between anatomy and function. Instead of regularizing based on differences between anatomy and function, we regularize based on differences between a mean functional image and a given functional image. Our proposed method outperforms both conventional MLEM and quadratic priors.
基于群体的功能模板先验正则化PET重建
我们概述了一种利用基于种群的数据在迭代PET重建中进行正则化的可能方法。多模态和高分辨率的平均形状模板是从一组共配准的PET-MR图像中导出的。模板的功能分量表示集合中图像中放射性示踪剂的平均分布,用于贝叶斯重构方案对给定图像进行正则化。与传统的基于解剖的先验不同,我们提出的方法没有假设解剖和功能之间的关系。我们不是基于解剖和功能之间的差异进行正则化,而是基于平均函数图像和给定函数图像之间的差异进行正则化。我们提出的方法优于传统的MLEM和二次先验。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信