{"title":"Population-based functional template priors for regularized PET reconstruction","authors":"Philip Novosad, A. Reader","doi":"10.1109/NSSMIC.2014.7430938","DOIUrl":null,"url":null,"abstract":"We outline a possible method for exploiting population-based data for regularization in iterative PET reconstruction. Multi-modal and high-resolution mean shape templates are derived from a set of co-registered PET-MR images. The functional component of the template, representing the average radiotracer distribution among the images in the set, is used in a Bayesian reconstruction scheme for regularization of a given image. Unlike conventional anatomical-based priors, our proposed method makes no assumptions about relations between anatomy and function. Instead of regularizing based on differences between anatomy and function, we regularize based on differences between a mean functional image and a given functional image. Our proposed method outperforms both conventional MLEM and quadratic priors.","PeriodicalId":144711,"journal":{"name":"2014 IEEE Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC)","volume":"49 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NSSMIC.2014.7430938","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
We outline a possible method for exploiting population-based data for regularization in iterative PET reconstruction. Multi-modal and high-resolution mean shape templates are derived from a set of co-registered PET-MR images. The functional component of the template, representing the average radiotracer distribution among the images in the set, is used in a Bayesian reconstruction scheme for regularization of a given image. Unlike conventional anatomical-based priors, our proposed method makes no assumptions about relations between anatomy and function. Instead of regularizing based on differences between anatomy and function, we regularize based on differences between a mean functional image and a given functional image. Our proposed method outperforms both conventional MLEM and quadratic priors.