Extreme Points and First-Order Stochastic Dominance: Theory and Applications

K. Yang, Alexander Zentefis
{"title":"Extreme Points and First-Order Stochastic Dominance: Theory and Applications","authors":"K. Yang, Alexander Zentefis","doi":"10.1145/3580507.3597719","DOIUrl":null,"url":null,"abstract":"We characterize the extreme points of first-order stochastic dominance (FOSD) intervals and show how these intervals are at the heart of many topics in economics. An FOSD interval is a set of distributions that dominate a distribution and are simultaneously dominated by another distribution, in the sense of FOSD. The convexity of FOSD intervals means that their extreme points are fundamental to understanding their properties. We show that a distribution is an extreme point of an FOSD interval if and only if the distribution either coincides with one of the FOSD bounds or is flat. Wherever the distribution is flat, at least one end of the flat portion must be attached to one of the FOSD bounds.","PeriodicalId":210555,"journal":{"name":"Proceedings of the 24th ACM Conference on Economics and Computation","volume":"57 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 24th ACM Conference on Economics and Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3580507.3597719","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We characterize the extreme points of first-order stochastic dominance (FOSD) intervals and show how these intervals are at the heart of many topics in economics. An FOSD interval is a set of distributions that dominate a distribution and are simultaneously dominated by another distribution, in the sense of FOSD. The convexity of FOSD intervals means that their extreme points are fundamental to understanding their properties. We show that a distribution is an extreme point of an FOSD interval if and only if the distribution either coincides with one of the FOSD bounds or is flat. Wherever the distribution is flat, at least one end of the flat portion must be attached to one of the FOSD bounds.
极值点与一阶随机优势:理论与应用
我们描述了一阶随机优势(FOSD)区间的极值点,并展示了这些区间如何成为经济学中许多主题的核心。在FOSD的意义上,一个FOSD区间是一组分布,它们支配一个分布,同时被另一个分布支配。FOSD区间的凸性意味着其极值点是理解其性质的基础。我们证明了一个分布是FOSD区间的极值点,当且仅当该分布与某个FOSD边界重合或者是平坦的。无论分布是平坦的,平坦部分的至少一端必须连接到FOSD边界之一。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信