Compatible rewriting of noncommutative polynomials for proving operator identities

Cyrille Chenavier, Clemens Hofstadler, C. Raab, G. Regensburger
{"title":"Compatible rewriting of noncommutative polynomials for proving operator identities","authors":"Cyrille Chenavier, Clemens Hofstadler, C. Raab, G. Regensburger","doi":"10.1145/3373207.3404047","DOIUrl":null,"url":null,"abstract":"The goal of this paper is to prove operator identities using equalities between noncommutative polynomials. In general, a polynomial expression is not valid in terms of operators, since it may not be compatible with domains and codomains of the corresponding operators. Recently, some of the authors introduced a framework based on labelled quivers to rigorously translate polynomial identities to operator identities. In the present paper, we extend and adapt the framework to the context of rewriting and polynomial reduction. We give a sufficient condition on the polynomials used for rewriting to ensure that standard polynomial reduction automatically respects domains and codomains of operators. Finally, we adapt the noncommutative Buchberger procedure to compute additional compatible polynomials for rewriting. In the package OperatorGB, we also provide an implementation of the concepts developed.","PeriodicalId":186699,"journal":{"name":"Proceedings of the 45th International Symposium on Symbolic and Algebraic Computation","volume":"42 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 45th International Symposium on Symbolic and Algebraic Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3373207.3404047","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

The goal of this paper is to prove operator identities using equalities between noncommutative polynomials. In general, a polynomial expression is not valid in terms of operators, since it may not be compatible with domains and codomains of the corresponding operators. Recently, some of the authors introduced a framework based on labelled quivers to rigorously translate polynomial identities to operator identities. In the present paper, we extend and adapt the framework to the context of rewriting and polynomial reduction. We give a sufficient condition on the polynomials used for rewriting to ensure that standard polynomial reduction automatically respects domains and codomains of operators. Finally, we adapt the noncommutative Buchberger procedure to compute additional compatible polynomials for rewriting. In the package OperatorGB, we also provide an implementation of the concepts developed.
证明算子恒等式的非交换多项式相容重写
本文的目的是利用非交换多项式之间的等式证明算子恒等式。一般来说,多项式表达式在算子上是无效的,因为它可能与相应算子的域和上域不兼容。最近,一些作者提出了一种基于标记颤栗的框架来严格地将多项式恒等式转化为算子恒等式。在本文中,我们扩展并调整了该框架,使其适用于重写和多项式约简。给出了用于重写的多项式的一个充分条件,以保证标准多项式约简自动尊重算子的域和上域。最后,我们采用非交换的Buchberger过程来计算额外的相容多项式。在包OperatorGB中,我们还提供了开发的概念的实现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信