Topic modeling Twitter data using Latent Dirichlet Allocation and Latent Semantic Analysis

Siti Qomariyah, Nur Iriawan, K. Fithriasari
{"title":"Topic modeling Twitter data using Latent Dirichlet Allocation and Latent Semantic Analysis","authors":"Siti Qomariyah, Nur Iriawan, K. Fithriasari","doi":"10.1063/1.5139825","DOIUrl":null,"url":null,"abstract":"The industrial world has entered the era of industrial revolution 4.0. In this era, there is an urgent data requirement from the community to support service policies. Because of that, Surabaya Government made Media Center Surabaya. This media is used to accommodate all the aspiration of Surabaya citizen. To access this media, a citizen can use Twitter. The topic which is discussed in Twitter is important information that we need to know. The information can be used to improve the performance of Surabaya Government services. Twitter data is a text data that consists of thousands of variables. Text mining is frequently used to analyze this kind of data, including topic modeling and sentiment analysis. This study would work on topic modeling focused on the algorithm employing Latent Dirichlet Allocation (LDA) and Latent Semantic Analysis (LSA). The evaluation of the algorithm performance uses the topic coherence. As unstructured data, the Twitter data need preprocessing before the analysis. The stages of preprocessing include cleansing, stemming, and stop words. The advantages of LSA are fast and easy to implement. LSA, on the other hand, doesn’t consider the relationship between documents in the corpus, while LDA does. This study shows that LDA gives a better result than LSA.","PeriodicalId":246056,"journal":{"name":"THE 2ND INTERNATIONAL CONFERENCE ON SCIENCE, MATHEMATICS, ENVIRONMENT, AND EDUCATION","volume":"118 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"THE 2ND INTERNATIONAL CONFERENCE ON SCIENCE, MATHEMATICS, ENVIRONMENT, AND EDUCATION","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1063/1.5139825","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 20

Abstract

The industrial world has entered the era of industrial revolution 4.0. In this era, there is an urgent data requirement from the community to support service policies. Because of that, Surabaya Government made Media Center Surabaya. This media is used to accommodate all the aspiration of Surabaya citizen. To access this media, a citizen can use Twitter. The topic which is discussed in Twitter is important information that we need to know. The information can be used to improve the performance of Surabaya Government services. Twitter data is a text data that consists of thousands of variables. Text mining is frequently used to analyze this kind of data, including topic modeling and sentiment analysis. This study would work on topic modeling focused on the algorithm employing Latent Dirichlet Allocation (LDA) and Latent Semantic Analysis (LSA). The evaluation of the algorithm performance uses the topic coherence. As unstructured data, the Twitter data need preprocessing before the analysis. The stages of preprocessing include cleansing, stemming, and stop words. The advantages of LSA are fast and easy to implement. LSA, on the other hand, doesn’t consider the relationship between documents in the corpus, while LDA does. This study shows that LDA gives a better result than LSA.
利用潜在狄利克雷分配和潜在语义分析对Twitter数据进行主题建模
工业世界已经进入工业革命4.0时代。在这个时代,社区迫切需要数据来支持服务策略。因此,泗水政府兴建了泗水媒体中心。这个媒体被用来满足泗水公民的所有愿望。要访问这种媒体,公民可以使用Twitter。在推特上讨论的话题是我们需要知道的重要信息。这些信息可用于改善泗水政府服务的绩效。Twitter数据是由数千个变量组成的文本数据。文本挖掘常用来分析这类数据,包括主题建模和情感分析。本研究将以潜在狄利克雷分配(Latent Dirichlet Allocation, LDA)和潜在语义分析(Latent Semantic Analysis, LSA)的主题建模算法为重点。对算法性能的评价采用主题相干性。作为非结构化数据,Twitter数据在分析前需要进行预处理。预处理的阶段包括清理、词干提取和停止词。LSA的优点是速度快、易于实现。另一方面,LSA不考虑语料库中文档之间的关系,而LDA则考虑。本研究表明LDA比LSA具有更好的效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信