Attention Estimation for Child-Robot Interaction

M. Attamimi, M. Miyata, Tetsuji Yamada, T. Omori, Ryoma Hida
{"title":"Attention Estimation for Child-Robot Interaction","authors":"M. Attamimi, M. Miyata, Tetsuji Yamada, T. Omori, Ryoma Hida","doi":"10.1145/2974804.2980510","DOIUrl":null,"url":null,"abstract":"In this paper, we present a method of estimating a child's attention, one of the more important human mental states, in a free-play scenario of child-robot interaction. First, we developed a system that could sense a child's verbal and non- verbal multimodal signals such as gaze, facial expression, proximity, and so on. Then, the observed information was used to train a Support Vector Machine (SVM) to estimate a human's attention level. We investigated the accuracy of the proposed method by comparing with a human judge's estimation, and obtained some promising results which we discuss here.","PeriodicalId":185756,"journal":{"name":"Proceedings of the Fourth International Conference on Human Agent Interaction","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Fourth International Conference on Human Agent Interaction","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2974804.2980510","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

In this paper, we present a method of estimating a child's attention, one of the more important human mental states, in a free-play scenario of child-robot interaction. First, we developed a system that could sense a child's verbal and non- verbal multimodal signals such as gaze, facial expression, proximity, and so on. Then, the observed information was used to train a Support Vector Machine (SVM) to estimate a human's attention level. We investigated the accuracy of the proposed method by comparing with a human judge's estimation, and obtained some promising results which we discuss here.
儿童-机器人交互的注意力估计
在本文中,我们提出了一种在儿童-机器人交互的自由游戏场景中估计儿童注意力的方法,这是人类更重要的心理状态之一。首先,我们开发了一个系统,可以感知孩子的语言和非语言多模态信号,如凝视、面部表情、接近等。然后,利用观察到的信息训练支持向量机(SVM)来估计人的注意力水平。通过与人类判断的估计进行比较,研究了该方法的准确性,并得到了一些有希望的结果,在此讨论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信