An application of genetic algorithms and BDDs to functional testing

Fabrizio Ferrandi, D. Sciuto, A. Fin, Franco Fummi
{"title":"An application of genetic algorithms and BDDs to functional testing","authors":"Fabrizio Ferrandi, D. Sciuto, A. Fin, Franco Fummi","doi":"10.1109/ICCD.2000.878268","DOIUrl":null,"url":null,"abstract":"This paper describes a functional level rest pattern generator, which combines two techniques: genetic algorithms (GAs) and binary decision diagrams (BDDs). The combined execution of such two techniques achieves better results for functional testing, than the single application of each separated technique. The entire set of functional errors is examined in a shorter time and a more compact test set is produced. The reason of this interesting result has been analyzed in the paper. It mainly depends on the fact that hard to detect errors for GA-based testing techniques are easy to detect than errors for BDD-based techniques and vice versa. The two testing approaches are thus complementary and can effectively cooperate.","PeriodicalId":437697,"journal":{"name":"Proceedings 2000 International Conference on Computer Design","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2000-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings 2000 International Conference on Computer Design","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCD.2000.878268","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

Abstract

This paper describes a functional level rest pattern generator, which combines two techniques: genetic algorithms (GAs) and binary decision diagrams (BDDs). The combined execution of such two techniques achieves better results for functional testing, than the single application of each separated technique. The entire set of functional errors is examined in a shorter time and a more compact test set is produced. The reason of this interesting result has been analyzed in the paper. It mainly depends on the fact that hard to detect errors for GA-based testing techniques are easy to detect than errors for BDD-based techniques and vice versa. The two testing approaches are thus complementary and can effectively cooperate.
遗传算法和bdd在功能测试中的应用
本文介绍了一种结合遗传算法和二进制决策图两种技术的功能级rest模式生成器。对于功能测试,这两种技术的联合执行比每种分离技术的单独应用获得更好的结果。在较短的时间内检查了整个功能误差集,并产生了更紧凑的测试集。本文分析了产生这一有趣结果的原因。这主要取决于基于ga的测试技术的难以检测的错误比基于bdd的测试技术的错误更容易检测,反之亦然。因此,这两种测试方法是互补的,可以有效地合作。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信