N. Braunschweiler, R. Doddipatla, Simon Keizer, Svetlana Stoyanchev
{"title":"Enabling Semi-Structured Knowledge Access via a Question-Answering Module in Task-oriented Dialogue Systems","authors":"N. Braunschweiler, R. Doddipatla, Simon Keizer, Svetlana Stoyanchev","doi":"10.1145/3571884.3597138","DOIUrl":null,"url":null,"abstract":"Users of task-oriented dialogue systems are often limited to ‘in-schema queries’, i.e., questions constrained by a predefined database structure. Providing access to additional semi- or unstructured knowledge could enable users to enter a wider range of queries answerable by the system. To this end, we have integrated a Question-Answering (QA)-module in an interactive restaurant search system and evaluated its impact using a crowd-sourced user evaluation. The QA-module includes knowledge selection and response generation components, both driven by fine-tuned GPT-2 language models, and a method to prevent responses unrelated to a user question (‘off-topic responses’). The results show that systems with QA-module are significantly preferred over the baseline without QA-module. Moreover, while the off-topic response prevention method was correctly triggered in 98.1% of questions not covered in the knowledge base, users showed more preference to the system that can retrieve information irrespective of whether it is relevant or not.","PeriodicalId":127379,"journal":{"name":"Proceedings of the 5th International Conference on Conversational User Interfaces","volume":"80 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 5th International Conference on Conversational User Interfaces","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3571884.3597138","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Users of task-oriented dialogue systems are often limited to ‘in-schema queries’, i.e., questions constrained by a predefined database structure. Providing access to additional semi- or unstructured knowledge could enable users to enter a wider range of queries answerable by the system. To this end, we have integrated a Question-Answering (QA)-module in an interactive restaurant search system and evaluated its impact using a crowd-sourced user evaluation. The QA-module includes knowledge selection and response generation components, both driven by fine-tuned GPT-2 language models, and a method to prevent responses unrelated to a user question (‘off-topic responses’). The results show that systems with QA-module are significantly preferred over the baseline without QA-module. Moreover, while the off-topic response prevention method was correctly triggered in 98.1% of questions not covered in the knowledge base, users showed more preference to the system that can retrieve information irrespective of whether it is relevant or not.