{"title":"Prospect of hydrocarbon uses based on exergy analysis in the vapor compression refrigeration system","authors":"J. U. Ahamed, R. Saidur, H. Masjuki","doi":"10.1109/CET.2011.6041480","DOIUrl":null,"url":null,"abstract":"This paper emphasized on the possibilities of researches in the field of exergy analysis in various usable sectors where vapor compression refrigeration systems are used. Exergy losses, exergy efficiency, second law efficiency and irreversibility of the system components as well as of the whole system are measured. In the vapor compression system, R134a, R290 and R600a are considered as refrigerants. Exergy parameters in the compressor, evaporator, condenser and expansion devices are calculated and analyzed. Exergy losses depend on evaporator temperatures, condensing temperature, refrigerants and ambient temperature. Most of the exergy losses occur in the condenser. Expansion device has the lowest losses. Exergy parameters are compared for different operating temperature. It is found that hydrocarbons (R600a) have 50% higher exergy efficiency than R134a. Mixture of hydrocarbons also shows the best performance based on the exergy analysis.","PeriodicalId":360345,"journal":{"name":"2011 IEEE Conference on Clean Energy and Technology (CET)","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE Conference on Clean Energy and Technology (CET)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CET.2011.6041480","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14
Abstract
This paper emphasized on the possibilities of researches in the field of exergy analysis in various usable sectors where vapor compression refrigeration systems are used. Exergy losses, exergy efficiency, second law efficiency and irreversibility of the system components as well as of the whole system are measured. In the vapor compression system, R134a, R290 and R600a are considered as refrigerants. Exergy parameters in the compressor, evaporator, condenser and expansion devices are calculated and analyzed. Exergy losses depend on evaporator temperatures, condensing temperature, refrigerants and ambient temperature. Most of the exergy losses occur in the condenser. Expansion device has the lowest losses. Exergy parameters are compared for different operating temperature. It is found that hydrocarbons (R600a) have 50% higher exergy efficiency than R134a. Mixture of hydrocarbons also shows the best performance based on the exergy analysis.