C. L. Britton, R. Warmack, Stephen F. Smith, P. I. Oden, R. L. Jones, T. Thundat, G. M. Brown, W. Bryan, J. Depriest, M. N. Ericson, M. Emery, Michael R. Moore, Gary W. Turner, A. Wintenberg, T. D. Threatt, Zhiyu Hu, L. Clonts, J. M. Rochelle
{"title":"Battery-powered, wireless MEMS sensors for high-sensitivity chemical and biological sensing","authors":"C. L. Britton, R. Warmack, Stephen F. Smith, P. I. Oden, R. L. Jones, T. Thundat, G. M. Brown, W. Bryan, J. Depriest, M. N. Ericson, M. Emery, Michael R. Moore, Gary W. Turner, A. Wintenberg, T. D. Threatt, Zhiyu Hu, L. Clonts, J. M. Rochelle","doi":"10.1109/ARVLSI.1999.756060","DOIUrl":null,"url":null,"abstract":"Researchers at Oak Ridge National Laboratory (ORNL) are developing selectively coated cantilever arrays in a surface-micromachined MEMS process for very high sensitivities in chemical and biological sensing. Toward this end, we have developed a one-dimensional (1-D) 10-element microcantilever array that we have coated with gold for mercury sensing and palladium for hydrogen sensing. Ultimately we will coat each element with a different coating. Currently, measurements have been performed using a companion analog 1.2-/spl mu/m CMOS eight channel readout chip also designed at ORNL specifically for the microcantilever arrays. In addition, we have combined our sensors with an ORNL-developed RF-telemetry chip having on-chip spread spectrum encoding and modulation circuitry to improve the robustness and security of sensor data in typical interference- and multipath-impaired environments. We have also provided for a selection of distinct spreading codes to serve groups of sensors in a common environment by the application of code-division multiple-access techniques. Our initial system is configured for use in the 915-MHz Industrial, Scientific, and Medical (ISM) band. The entire package is powered by four AA batteries.","PeriodicalId":358015,"journal":{"name":"Proceedings 20th Anniversary Conference on Advanced Research in VLSI","volume":"110 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1999-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"21","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings 20th Anniversary Conference on Advanced Research in VLSI","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ARVLSI.1999.756060","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 21
Abstract
Researchers at Oak Ridge National Laboratory (ORNL) are developing selectively coated cantilever arrays in a surface-micromachined MEMS process for very high sensitivities in chemical and biological sensing. Toward this end, we have developed a one-dimensional (1-D) 10-element microcantilever array that we have coated with gold for mercury sensing and palladium for hydrogen sensing. Ultimately we will coat each element with a different coating. Currently, measurements have been performed using a companion analog 1.2-/spl mu/m CMOS eight channel readout chip also designed at ORNL specifically for the microcantilever arrays. In addition, we have combined our sensors with an ORNL-developed RF-telemetry chip having on-chip spread spectrum encoding and modulation circuitry to improve the robustness and security of sensor data in typical interference- and multipath-impaired environments. We have also provided for a selection of distinct spreading codes to serve groups of sensors in a common environment by the application of code-division multiple-access techniques. Our initial system is configured for use in the 915-MHz Industrial, Scientific, and Medical (ISM) band. The entire package is powered by four AA batteries.