{"title":"Predicting hypoglycemia in diabetic patients using data mining techniques","authors":"Khouloud Safi Eljil, G. Qadah, Michel Pasquier","doi":"10.1109/INNOVATIONS.2013.6544406","DOIUrl":null,"url":null,"abstract":"The proper control of blood glucose levels in diabetic patients reduces serious complications. Yet tighter glycemic control increases the risk of developing hypoglycemia, a sudden drop in patients' blood glucose levels that causes coma and possibly death if proper action is not taken immediately. In this paper, we propose a hypoglycemia prediction model, using recent history of subcutaneous glucose measurements collected via Continuous Glucose Monitoring (CGM) sensors. The model is able to predict hypoglycemia events within a prediction horizon of thirty minutes accurately (sensitivity= 86.47%, specificity= 96.22, accuracy= 95.97%) using only the last two glucose measurements and the difference between them. More remarkably, this study shows the ability to develop a generalized prediction model suitable for predicting hypoglycemia events for the group of patients participating in the study.","PeriodicalId":438270,"journal":{"name":"2013 9th International Conference on Innovations in Information Technology (IIT)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 9th International Conference on Innovations in Information Technology (IIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INNOVATIONS.2013.6544406","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15
Abstract
The proper control of blood glucose levels in diabetic patients reduces serious complications. Yet tighter glycemic control increases the risk of developing hypoglycemia, a sudden drop in patients' blood glucose levels that causes coma and possibly death if proper action is not taken immediately. In this paper, we propose a hypoglycemia prediction model, using recent history of subcutaneous glucose measurements collected via Continuous Glucose Monitoring (CGM) sensors. The model is able to predict hypoglycemia events within a prediction horizon of thirty minutes accurately (sensitivity= 86.47%, specificity= 96.22, accuracy= 95.97%) using only the last two glucose measurements and the difference between them. More remarkably, this study shows the ability to develop a generalized prediction model suitable for predicting hypoglycemia events for the group of patients participating in the study.