A Low Cost Low Power Quaternary LUT Cell for Fault Tolerant Applications in Future Technologies

E. Rhod, L. Carro
{"title":"A Low Cost Low Power Quaternary LUT Cell for Fault Tolerant Applications in Future Technologies","authors":"E. Rhod, L. Carro","doi":"10.1109/ISVLSI.2009.34","DOIUrl":null,"url":null,"abstract":"Field Programmable Gate Arrays offer flexibility to program hardware systems together with the possibility to explore any level of parallelism available in the application. Unfortunately, this flexibility costs a huge amount of circuit area necessary to implement all the routing switches and wires. Also, device scaling in new and future technologies brings along a severe increase in the soft error rate of circuits, for combinational and sequential logic. In order to reduce the impact of the wires and switches and cope with SETs in FPGAs, this work proposes a low power voltage-mode quaternary LUT (QLUT) design that uses quaternary logic to reduce the area spent in switches and routing wires. At the same time, the proposed QLUT provides robustness against SETs. Results show that the fault tolerant QLU There proposed detects all faults that can cause an error with significant less area and less power when comparing to the binary correspondent LUT protected with the DWC technique. In order to evaluate how the proposed QLUT will deal with the process variability of sub 90nm technologies, extensive Monte Carlo simulations were performed and these results are here discussed.","PeriodicalId":137508,"journal":{"name":"2009 IEEE Computer Society Annual Symposium on VLSI","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE Computer Society Annual Symposium on VLSI","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISVLSI.2009.34","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Field Programmable Gate Arrays offer flexibility to program hardware systems together with the possibility to explore any level of parallelism available in the application. Unfortunately, this flexibility costs a huge amount of circuit area necessary to implement all the routing switches and wires. Also, device scaling in new and future technologies brings along a severe increase in the soft error rate of circuits, for combinational and sequential logic. In order to reduce the impact of the wires and switches and cope with SETs in FPGAs, this work proposes a low power voltage-mode quaternary LUT (QLUT) design that uses quaternary logic to reduce the area spent in switches and routing wires. At the same time, the proposed QLUT provides robustness against SETs. Results show that the fault tolerant QLU There proposed detects all faults that can cause an error with significant less area and less power when comparing to the binary correspondent LUT protected with the DWC technique. In order to evaluate how the proposed QLUT will deal with the process variability of sub 90nm technologies, extensive Monte Carlo simulations were performed and these results are here discussed.
一种低成本、低功耗的四元LUT单元,用于未来技术的容错应用
现场可编程门阵列为编程硬件系统提供了灵活性,并有可能探索应用程序中可用的任何并行级别。不幸的是,这种灵活性需要大量的电路面积来实现所有路由开关和电线。此外,新技术和未来技术中的器件缩放带来了电路软错误率的严重增加,用于组合和顺序逻辑。为了减少电线和开关的影响并应对fpga中的set,本工作提出了一种低功率电压模式四元LUT (QLUT)设计,该设计使用四元逻辑来减少交换机和布线电线所花费的面积。同时,提出的QLUT提供了对集合的鲁棒性。结果表明,与采用DWC技术保护的二进制对应LUT相比,所提出的容错QLU能够以更小的面积和更低的功耗检测到所有可能导致错误的故障。为了评估所提出的QLUT将如何处理亚90nm技术的工艺变化,进行了大量的蒙特卡罗模拟,并在这里讨论这些结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信