SAT-based analysis of sensitisable paths

M. Sauer, A. Czutro, Tobias Schubert, Stefan Hillebrecht, I. Polian, B. Becker
{"title":"SAT-based analysis of sensitisable paths","authors":"M. Sauer, A. Czutro, Tobias Schubert, Stefan Hillebrecht, I. Polian, B. Becker","doi":"10.1109/DDECS.2011.5783055","DOIUrl":null,"url":null,"abstract":"Manufacturing defects in nanoscale technologies have highly complex timing behaviour that is also affected by process variations. While conventional wisdom suggests that it is optimal to detect a delay defect through the longest sensitisable path, non-trivial defect behaviour along with modelling inaccuracies necessitate consideration of paths of well-controlled length during test generation. We present a generic methodology that yields tests through all sensitisable paths of user-specified length. The resulting tests can be employed within the framework of adaptive testing. The methodology is based on encoding the problem as a Boolean-satisfiability (SAT) instance and thereby leverages recent advances in SAT-solving technology.","PeriodicalId":231389,"journal":{"name":"14th IEEE International Symposium on Design and Diagnostics of Electronic Circuits and Systems","volume":"102 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-04-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"14th IEEE International Symposium on Design and Diagnostics of Electronic Circuits and Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DDECS.2011.5783055","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 20

Abstract

Manufacturing defects in nanoscale technologies have highly complex timing behaviour that is also affected by process variations. While conventional wisdom suggests that it is optimal to detect a delay defect through the longest sensitisable path, non-trivial defect behaviour along with modelling inaccuracies necessitate consideration of paths of well-controlled length during test generation. We present a generic methodology that yields tests through all sensitisable paths of user-specified length. The resulting tests can be employed within the framework of adaptive testing. The methodology is based on encoding the problem as a Boolean-satisfiability (SAT) instance and thereby leverages recent advances in SAT-solving technology.
基于sat的敏感路径分析
纳米技术中的制造缺陷具有高度复杂的时序行为,并且还受工艺变化的影响。虽然传统观点认为,通过最长的敏感路径来检测延迟缺陷是最佳的,但在测试生成过程中,非平凡缺陷行为以及建模不准确性需要考虑长度控制良好的路径。我们提出了一种通用的方法,通过用户指定长度的所有敏感路径产生测试。所得到的测试可以在自适应测试的框架内使用。该方法基于将问题编码为布尔可满足性(SAT)实例,从而利用了SAT求解技术的最新进展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信