Divide and Conquer: Floating-Point Exponential Calculation Based on Taylor-Series Expansion

Jianglin Wei, A. Kuwana, Haruo Kobayashi, K. Kubo
{"title":"Divide and Conquer: Floating-Point Exponential Calculation Based on Taylor-Series Expansion","authors":"Jianglin Wei, A. Kuwana, Haruo Kobayashi, K. Kubo","doi":"10.1109/ASICON52560.2021.9620253","DOIUrl":null,"url":null,"abstract":"This paper presents an algorithm to compute the exponential exp(x) floating-point tails based on Taylor- series expansion with mantissa region division. exp(x) is expanded in different regions with corresponding central values using Taylor-series and the best result is selected from among the different convergence ranges obtained. We show the cases of x>0 as well as x<0, and then show the tradeoff among LUT size and the required numbers of additions, subtractions and multiplications, and also computing accuracy of exp(x) by Taylor expansion through simulation results. The designer can choose the best algorithm to build a reasonable hardware system by the method described in this paper.","PeriodicalId":233584,"journal":{"name":"2021 IEEE 14th International Conference on ASIC (ASICON)","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE 14th International Conference on ASIC (ASICON)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASICON52560.2021.9620253","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents an algorithm to compute the exponential exp(x) floating-point tails based on Taylor- series expansion with mantissa region division. exp(x) is expanded in different regions with corresponding central values using Taylor-series and the best result is selected from among the different convergence ranges obtained. We show the cases of x>0 as well as x<0, and then show the tradeoff among LUT size and the required numbers of additions, subtractions and multiplications, and also computing accuracy of exp(x) by Taylor expansion through simulation results. The designer can choose the best algorithm to build a reasonable hardware system by the method described in this paper.
分而治之:基于泰勒级数展开的浮点指数计算
本文提出了一种基于尾数区域划分的泰勒级数展开的计算指数exp(x)浮点尾的算法。利用泰勒级数将exp(x)在具有相应中心值的不同区域展开,并从得到的不同收敛范围中选择最佳结果。我们展示了x>0和x<0的情况,然后通过仿真结果展示了LUT大小和所需的加减乘法次数之间的权衡,以及Taylor展开exp(x)的计算精度。设计人员可以通过本文描述的方法选择最佳算法来构建合理的硬件系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信