Comparison of control methods: Learning robotics manipulation with contact dynamics

Kedao Wang, Yong Li
{"title":"Comparison of control methods: Learning robotics manipulation with contact dynamics","authors":"Kedao Wang, Yong Li","doi":"10.1109/SIMPAR.2018.8376263","DOIUrl":null,"url":null,"abstract":"We compare the different control methods in learning a robotic manipulation task. The task is to push an object (a cube and sphere) from varying beginning position to a fixed goal position. Complex contact dynamics is involved. We used PPO as the learning algorithm trained from scratch with dense rewards. Comparison is performed on two dimensions: learning at joint level vs. end-effector level, as well as velocity control vs. position control. For end-effector learning, we use inverse jacobian to map from end-effector target velocity/position to joint velocity/position, and accounting for singularity, joint limits, and gimbal lock. Across the four methods proposed, joint velocity control demonstrated the fastest convergence on cube task across all control methods, and is the only successful method on sphere task. Video demonstration: https://www.youtube.com/watch?v=wh_qV58f95Y.","PeriodicalId":156498,"journal":{"name":"2018 IEEE International Conference on Simulation, Modeling, and Programming for Autonomous Robots (SIMPAR)","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE International Conference on Simulation, Modeling, and Programming for Autonomous Robots (SIMPAR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SIMPAR.2018.8376263","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

We compare the different control methods in learning a robotic manipulation task. The task is to push an object (a cube and sphere) from varying beginning position to a fixed goal position. Complex contact dynamics is involved. We used PPO as the learning algorithm trained from scratch with dense rewards. Comparison is performed on two dimensions: learning at joint level vs. end-effector level, as well as velocity control vs. position control. For end-effector learning, we use inverse jacobian to map from end-effector target velocity/position to joint velocity/position, and accounting for singularity, joint limits, and gimbal lock. Across the four methods proposed, joint velocity control demonstrated the fastest convergence on cube task across all control methods, and is the only successful method on sphere task. Video demonstration: https://www.youtube.com/watch?v=wh_qV58f95Y.
控制方法的比较:学习接触动力学的机器人操作
我们比较了学习机器人操作任务的不同控制方法。任务是将一个物体(立方体和球体)从不同的起始位置推到固定的目标位置。涉及复杂的接触动力学。我们使用PPO作为从头开始训练的具有密集奖励的学习算法。在两个维度上进行了比较:关节水平与末端执行器水平的学习,以及速度控制与位置控制。对于末端执行器学习,我们使用逆雅可比矩阵从末端执行器目标速度/位置映射到关节速度/位置,并考虑奇点,关节极限和万向节锁定。在所提出的四种控制方法中,关节速度控制在立方体任务上收敛速度最快,在球体任务上是唯一成功的方法。视频演示:https://www.youtube.com/watch?v=wh_qV58f95Y。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信