V. SivaRamaKrishna, B. Amrutur, N. Bhat, K. ChakraPani, S. Srinivasan
{"title":"Detection of glycated hemoglobin using 3-Aminophenylboronic acid modified graphene oxide","authors":"V. SivaRamaKrishna, B. Amrutur, N. Bhat, K. ChakraPani, S. Srinivasan","doi":"10.1109/LISSA.2011.5754140","DOIUrl":null,"url":null,"abstract":"This paper presents the chemical synthesis of 3-Aminophenylboronic acid (APBA) modified graphene oxide (GO) and its application to the electrochemical detection of glycated hemoglobin (GHb). The compound (GO-APBA) was synthesized by forming an amide linkage between the amino group (-NH2) of APBA and the carboxylic group (-COOH) of GO. The compound was characterized using IR spectroscopy. Detection of GHb was carried out using Electrochemical Impedance Spectroscopic (EIS) measurements with GO-APBA modified glassy carbon electrode as the working electrode.","PeriodicalId":227469,"journal":{"name":"2011 IEEE/NIH Life Science Systems and Applications Workshop (LiSSA)","volume":"50 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE/NIH Life Science Systems and Applications Workshop (LiSSA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/LISSA.2011.5754140","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9
Abstract
This paper presents the chemical synthesis of 3-Aminophenylboronic acid (APBA) modified graphene oxide (GO) and its application to the electrochemical detection of glycated hemoglobin (GHb). The compound (GO-APBA) was synthesized by forming an amide linkage between the amino group (-NH2) of APBA and the carboxylic group (-COOH) of GO. The compound was characterized using IR spectroscopy. Detection of GHb was carried out using Electrochemical Impedance Spectroscopic (EIS) measurements with GO-APBA modified glassy carbon electrode as the working electrode.