Sliding-window caching algorithm for streaming media server

Jun Yu Li, Zhen-Jun Chen
{"title":"Sliding-window caching algorithm for streaming media server","authors":"Jun Yu Li, Zhen-Jun Chen","doi":"10.1145/1655925.1656135","DOIUrl":null,"url":null,"abstract":"In the paper, we propose a novel Sliding Window caching algorithm for fast interactive access to alleviating the bottleneck in accessing disk I/O or network of limited bandwidth, which uses periodic caching to efficiently manage the cached video data. The performance is further enhanced by adopting two policies: prefix caching and variable-sized caching. Simulations using traces from a real VOD server confirm that our proposed method considerably outperforms existing techniques based on uniform segmentation, exponential segmentation, LRU exponential segmentation and adaptive and lazy segmentation algorithm. Under VCR operations, our proposed method achieves a 35% disk load reduction by caching 2.4% of the video' total size.","PeriodicalId":122831,"journal":{"name":"Proceedings of the 2nd International Conference on Interaction Sciences: Information Technology, Culture and Human","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2nd International Conference on Interaction Sciences: Information Technology, Culture and Human","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1655925.1656135","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

In the paper, we propose a novel Sliding Window caching algorithm for fast interactive access to alleviating the bottleneck in accessing disk I/O or network of limited bandwidth, which uses periodic caching to efficiently manage the cached video data. The performance is further enhanced by adopting two policies: prefix caching and variable-sized caching. Simulations using traces from a real VOD server confirm that our proposed method considerably outperforms existing techniques based on uniform segmentation, exponential segmentation, LRU exponential segmentation and adaptive and lazy segmentation algorithm. Under VCR operations, our proposed method achieves a 35% disk load reduction by caching 2.4% of the video' total size.
流媒体服务器的滑动窗口缓存算法
本文提出了一种新的滑动窗口缓存算法,用于快速交互访问,以缓解访问磁盘I/O或有限带宽网络的瓶颈,该算法使用周期性缓存来有效地管理缓存的视频数据。通过采用前缀缓存和可变大小缓存两种策略,性能得到进一步提高。利用真实VOD服务器的轨迹进行仿真,证实了我们提出的方法大大优于基于均匀分割、指数分割、LRU指数分割以及自适应和惰性分割算法的现有技术。在VCR操作下,我们提出的方法通过缓存视频总大小的2.4%实现了35%的磁盘负载减少。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信