Multi-Parameter Optimization for a Robust RGB-D SLAM System

Yizhao Wang, Xiaoxiao Zhu, Guohan He, Q. Cao
{"title":"Multi-Parameter Optimization for a Robust RGB-D SLAM System","authors":"Yizhao Wang, Xiaoxiao Zhu, Guohan He, Q. Cao","doi":"10.1109/ICRA48506.2021.9561538","DOIUrl":null,"url":null,"abstract":"SLAM systems can retrieve their metric scales and depth information using RGB-D cameras. However, limited by the sensing range and objects structure, RGB-D cameras can not always work well, resulting in failures sometimes. In this work, we present initialization and localization methods based on maximum-a-posteriori estimation. Our system endows monocular keypoints with valid depth values and introduce them into bundle adjustment. Depth bias coefficient and scale factor are also optimized in the local window, obtaining robustness in large scale environments and long-running operations. The experimental results indicate that our system provides the best robustness compared with other excellent methods in the literature, being able to process the most challenging sequences in the TUM RGB-D dataset.","PeriodicalId":108312,"journal":{"name":"2021 IEEE International Conference on Robotics and Automation (ICRA)","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Conference on Robotics and Automation (ICRA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICRA48506.2021.9561538","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

SLAM systems can retrieve their metric scales and depth information using RGB-D cameras. However, limited by the sensing range and objects structure, RGB-D cameras can not always work well, resulting in failures sometimes. In this work, we present initialization and localization methods based on maximum-a-posteriori estimation. Our system endows monocular keypoints with valid depth values and introduce them into bundle adjustment. Depth bias coefficient and scale factor are also optimized in the local window, obtaining robustness in large scale environments and long-running operations. The experimental results indicate that our system provides the best robustness compared with other excellent methods in the literature, being able to process the most challenging sequences in the TUM RGB-D dataset.
鲁棒RGB-D SLAM系统的多参数优化
SLAM系统可以使用RGB-D相机检索其公制尺度和深度信息。然而,受传感范围和物体结构的限制,RGB-D相机并非总是能很好地工作,有时会出现故障。在这项工作中,我们提出了基于最大后验估计的初始化和定位方法。该系统赋予单目关键点有效的深度值,并将其引入束调整。深度偏置系数和尺度因子也在局部窗口进行了优化,在大规模环境和长时间运行中具有鲁棒性。实验结果表明,与文献中其他优秀的方法相比,我们的系统提供了最好的鲁棒性,能够处理TUM RGB-D数据集中最具挑战性的序列。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信