Distributed fault diagnosis and tolerant control for a large-scale power generator network

Zhi Feng, G. Hu
{"title":"Distributed fault diagnosis and tolerant control for a large-scale power generator network","authors":"Zhi Feng, G. Hu","doi":"10.1109/ICARCV.2016.7838723","DOIUrl":null,"url":null,"abstract":"This paper addresses a distributed fault diagnosis and fault-tolerant control problem for a multi-agent system modeling a large-scale power generator network. The goal is to enable all the agents to achieve the control objective of asymptotic stability without losing the system tracking performance. Before solving this DFTC problem, a distributed fault detection (DFD) method is provided for fault detection. Next, the designs focus on a DFTC scheme without estimating the upper bound of the coupled, nonlinear, state-dependent unknown input. A model-based distributed state estimator (DSE) together with a proportional-integral-like nonlinear distributed identifier (DI) is then developed to identify the unknown input. By exploiting the redundancies from the estimated states and unknown input information obtained from the DSE and DI, a novel continuous DFTC is designed to enable the agents to achieve asymptotic consensus tracking without losing the system tracking performance while achieving distributed unknown input identification. A power system example and numerical simulations are provided to illustrate the effectiveness of the proposed DFTC method.","PeriodicalId":128828,"journal":{"name":"2016 14th International Conference on Control, Automation, Robotics and Vision (ICARCV)","volume":"56 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 14th International Conference on Control, Automation, Robotics and Vision (ICARCV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICARCV.2016.7838723","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper addresses a distributed fault diagnosis and fault-tolerant control problem for a multi-agent system modeling a large-scale power generator network. The goal is to enable all the agents to achieve the control objective of asymptotic stability without losing the system tracking performance. Before solving this DFTC problem, a distributed fault detection (DFD) method is provided for fault detection. Next, the designs focus on a DFTC scheme without estimating the upper bound of the coupled, nonlinear, state-dependent unknown input. A model-based distributed state estimator (DSE) together with a proportional-integral-like nonlinear distributed identifier (DI) is then developed to identify the unknown input. By exploiting the redundancies from the estimated states and unknown input information obtained from the DSE and DI, a novel continuous DFTC is designed to enable the agents to achieve asymptotic consensus tracking without losing the system tracking performance while achieving distributed unknown input identification. A power system example and numerical simulations are provided to illustrate the effectiveness of the proposed DFTC method.
大型发电网络的分布式故障诊断与容错控制
本文研究了大型发电机网络多智能体系统建模的分布式故障诊断和容错控制问题。目标是在不损失系统跟踪性能的前提下,使所有智能体都能达到渐近稳定的控制目标。在解决DFTC问题之前,提供了一种分布式故障检测(DFD)方法来进行故障检测。接下来,设计的重点是不估计耦合、非线性、状态相关的未知输入的上界的DFTC方案。然后提出了基于模型的分布式状态估计器(DSE)和类比例积分非线性分布式辨识器(DI)来识别未知输入。通过利用预估状态的冗余性和从DSE和DI中获得的未知输入信息,设计了一种新的连续DFTC,使智能体在不损失系统跟踪性能的情况下实现渐近共识跟踪,同时实现分布式未知输入识别。通过一个电力系统算例和数值仿真,验证了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信