Text Document Preprocessing and Dimension Reduction Techniques for Text Document Clustering

Ammar Ismael Kadhim, Y. Cheah, Nurul Hashimah Ahamed
{"title":"Text Document Preprocessing and Dimension Reduction Techniques for Text Document Clustering","authors":"Ammar Ismael Kadhim, Y. Cheah, Nurul Hashimah Ahamed","doi":"10.1109/ICAIET.2014.21","DOIUrl":null,"url":null,"abstract":"Text mining defines generally the process of extracting interesting features (non-trivial) and knowledge from unstructured text documents. Text mining is an interdisciplinary field which depends on information retrieval, data mining, machine learning, parameter statistics and computational linguistics. Standard text mining and retrieval information techniques of text document usually rely on similar categories. An alternative method of retrieving information is clustering documents to preprocess text. The preprocessing steps have a huge effect on the success to extract knowledge. This study implements TF-IDF and singular value decomposition (SVD) dimensionality reduction techniques. The proposed system presents an effective preprocessing and dimensionality reduction techniques which help the document clustering by using k-means algorithm. Finally, the experimental results show that the proposed method enhances the performance of English text document clustering. Simulation results on BBC news and BBC sport datasets show the superiority of the proposed algorithm.","PeriodicalId":225159,"journal":{"name":"2014 4th International Conference on Artificial Intelligence with Applications in Engineering and Technology","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"52","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 4th International Conference on Artificial Intelligence with Applications in Engineering and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICAIET.2014.21","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 52

Abstract

Text mining defines generally the process of extracting interesting features (non-trivial) and knowledge from unstructured text documents. Text mining is an interdisciplinary field which depends on information retrieval, data mining, machine learning, parameter statistics and computational linguistics. Standard text mining and retrieval information techniques of text document usually rely on similar categories. An alternative method of retrieving information is clustering documents to preprocess text. The preprocessing steps have a huge effect on the success to extract knowledge. This study implements TF-IDF and singular value decomposition (SVD) dimensionality reduction techniques. The proposed system presents an effective preprocessing and dimensionality reduction techniques which help the document clustering by using k-means algorithm. Finally, the experimental results show that the proposed method enhances the performance of English text document clustering. Simulation results on BBC news and BBC sport datasets show the superiority of the proposed algorithm.
文本文档预处理和文本文档聚类降维技术
文本挖掘通常定义了从非结构化文本文档中提取有趣的特征(非琐碎的)和知识的过程。文本挖掘是一个跨学科的领域,它依赖于信息检索、数据挖掘、机器学习、参数统计和计算语言学。文本文档的标准文本挖掘和检索信息技术通常依赖于相似的分类。检索信息的另一种方法是聚类文档来预处理文本。预处理步骤对知识提取的成功与否有很大的影响。本研究实现了TF-IDF和奇异值分解(SVD)降维技术。该系统提出了一种有效的预处理和降维技术,有助于使用k-means算法对文档进行聚类。最后,实验结果表明,该方法提高了英语文本文档聚类的性能。在BBC新闻和BBC体育数据集上的仿真结果表明了该算法的优越性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信