Influence of Non-Newtonian Rheology on Mass Transfer From a Biofluid in Separated and Reattached Flows

K. Hammad
{"title":"Influence of Non-Newtonian Rheology on Mass Transfer From a Biofluid in Separated and Reattached Flows","authors":"K. Hammad","doi":"10.1115/IMECE2018-86809","DOIUrl":null,"url":null,"abstract":"Influence of the rheological model selection on the flow and mass transfer behavior of human blood in a separated and reattached flow region is investigated. Newtonian and non-Newtonian hemorheological models that account for the yield stress and shear-thinning characteristics of blood are used. The conservation of mass, momentum, and species equations as well as the Herschel-Bulkley constitutive equation are solved numerically using a finite-difference scheme. A parametric study is performed to reveal the impact of flow restriction and rheological modelling on blood-borne oxygen exchange with the confining walls. The wall mass transfer rates within the separated and reattached regions display a strong dependency on the used hemorheological model. Newtonian and non-Newtonian models result in a peak wall mass transfer rate within the recirculation region. However, non-Newtonian models that account for the yield stress and shear-thinning effects predict a substantial, highly localized, drop in the wall mass transfer rates of oxygen, at the reattachment point.","PeriodicalId":332737,"journal":{"name":"Volume 3: Biomedical and Biotechnology Engineering","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 3: Biomedical and Biotechnology Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/IMECE2018-86809","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Influence of the rheological model selection on the flow and mass transfer behavior of human blood in a separated and reattached flow region is investigated. Newtonian and non-Newtonian hemorheological models that account for the yield stress and shear-thinning characteristics of blood are used. The conservation of mass, momentum, and species equations as well as the Herschel-Bulkley constitutive equation are solved numerically using a finite-difference scheme. A parametric study is performed to reveal the impact of flow restriction and rheological modelling on blood-borne oxygen exchange with the confining walls. The wall mass transfer rates within the separated and reattached regions display a strong dependency on the used hemorheological model. Newtonian and non-Newtonian models result in a peak wall mass transfer rate within the recirculation region. However, non-Newtonian models that account for the yield stress and shear-thinning effects predict a substantial, highly localized, drop in the wall mass transfer rates of oxygen, at the reattachment point.
非牛顿流变性对分离和再附着流动中生物流体传质的影响
研究了流变学模型的选择对人体血液在分离和再附着流区的流动和传质行为的影响。牛顿和非牛顿血液流变学模型,考虑屈服应力和剪切变薄的血液特性被使用。质量守恒、动量守恒和物种守恒方程以及赫歇尔-巴克利本构方程采用有限差分格式进行了数值求解。进行了参数化研究,以揭示流动限制和流变学模型对血氧交换与围壁的影响。分离和再连接区域内的壁传质速率与所使用的血液流变学模型密切相关。牛顿模型和非牛顿模型导致了循环区域壁面传质率的峰值。然而,考虑到屈服应力和剪切减薄效应的非牛顿模型预测,在再附着点,氧的壁传质速率会出现实质性的、高度局部化的下降。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信