Online Prediction Method of RUL of Lithium Battery Based on CEEMDAN-ILSTM

Lingzhi Yi, Bo Liu, Yahui Wang, Xinkun Cai, Jiang Zhu
{"title":"Online Prediction Method of RUL of Lithium Battery Based on CEEMDAN-ILSTM","authors":"Lingzhi Yi, Bo Liu, Yahui Wang, Xinkun Cai, Jiang Zhu","doi":"10.1109/EI256261.2022.10117247","DOIUrl":null,"url":null,"abstract":"Aiming at the problems of non-linearity of remaining life data caused by the uncertainty of lithium battery discharge behavior and local over optimization in the process of optimizing parameters by swarm intelligence algorithm, a short-term and long-term memory neural network (CEEMDAN-ILSTM) prediction method based on data decomposition and improved whale optimization algorithm is proposed. In this method, the CEEMDAN algorithm is used to decompose the original data to preliminarily simplify the hidden change law in the data, and the improved whale optimization algorithm is used to optimize the parameters of the neural network to find out the network parameters that can make the current prediction model have better prediction performance. Through the evaluation on the lithium battery data set provided by NASA, compared with the current mainstream methods, the method proposed in this paper has better prediction performance than other methods.","PeriodicalId":413409,"journal":{"name":"2022 IEEE 6th Conference on Energy Internet and Energy System Integration (EI2)","volume":"77 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 6th Conference on Energy Internet and Energy System Integration (EI2)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EI256261.2022.10117247","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Aiming at the problems of non-linearity of remaining life data caused by the uncertainty of lithium battery discharge behavior and local over optimization in the process of optimizing parameters by swarm intelligence algorithm, a short-term and long-term memory neural network (CEEMDAN-ILSTM) prediction method based on data decomposition and improved whale optimization algorithm is proposed. In this method, the CEEMDAN algorithm is used to decompose the original data to preliminarily simplify the hidden change law in the data, and the improved whale optimization algorithm is used to optimize the parameters of the neural network to find out the network parameters that can make the current prediction model have better prediction performance. Through the evaluation on the lithium battery data set provided by NASA, compared with the current mainstream methods, the method proposed in this paper has better prediction performance than other methods.
基于CEEMDAN-ILSTM的锂电池RUL在线预测方法
针对锂电池放电行为的不确定性导致剩余寿命数据的非线性以及群体智能算法在参数优化过程中的局部过优问题,提出了一种基于数据分解和改进鲸鱼优化算法的长短期记忆神经网络(CEEMDAN-ILSTM)预测方法。该方法采用CEEMDAN算法对原始数据进行分解,初步简化数据中隐藏的变化规律,并采用改进的鲸鱼优化算法对神经网络参数进行优化,找出能够使当前预测模型具有更好预测性能的网络参数。通过对NASA提供的锂电池数据集进行评估,与目前主流方法相比,本文方法的预测性能优于其他方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信