On the parallelization of triangular decompositions

Mohammadali Asadi, Alexander Brandt, Robert H. C. Moir, M. M. Maza, Yuzhen Xie
{"title":"On the parallelization of triangular decompositions","authors":"Mohammadali Asadi, Alexander Brandt, Robert H. C. Moir, M. M. Maza, Yuzhen Xie","doi":"10.1145/3373207.3404065","DOIUrl":null,"url":null,"abstract":"We discuss the parallelization of algorithms for solving polynomial systems by way of triangular decomposition. The Triangularize algorithm proceeds through incremental intersections of polynomials to produce different components (points, curves, surfaces, etc.) of the solution set. Independent components imply the opportunity for concurrency. This \"component-level\" parallelization of triangular decompositions, our focus here, belongs to the class of dynamic irregular parallelism. Potential parallel speed-up depends only on geometrical properties of the solution set (number of components, their dimensions and degrees); these algorithms do not scale with the number of processors. To manage the irregularities of component-level parallelization we combine different concurrency patterns, namely, workpile, producer-consumer, and fork/join. We report on our implementation in the freely available BPAS library. Experimentation with thousands of polynomial systems yield examples with up to 9.5× speed-up on a 12-core machine.","PeriodicalId":186699,"journal":{"name":"Proceedings of the 45th International Symposium on Symbolic and Algebraic Computation","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 45th International Symposium on Symbolic and Algebraic Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3373207.3404065","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

We discuss the parallelization of algorithms for solving polynomial systems by way of triangular decomposition. The Triangularize algorithm proceeds through incremental intersections of polynomials to produce different components (points, curves, surfaces, etc.) of the solution set. Independent components imply the opportunity for concurrency. This "component-level" parallelization of triangular decompositions, our focus here, belongs to the class of dynamic irregular parallelism. Potential parallel speed-up depends only on geometrical properties of the solution set (number of components, their dimensions and degrees); these algorithms do not scale with the number of processors. To manage the irregularities of component-level parallelization we combine different concurrency patterns, namely, workpile, producer-consumer, and fork/join. We report on our implementation in the freely available BPAS library. Experimentation with thousands of polynomial systems yield examples with up to 9.5× speed-up on a 12-core machine.
关于三角形分解的并行化
本文讨论了用三角分解方法求解多项式系统的并行化算法。三角化算法通过多项式的增量相交来产生解集的不同分量(点、曲线、曲面等)。独立组件意味着并发的可能性。这种三角分解的“组件级”并行化是我们这里的重点,属于动态不规则并行化的范畴。潜在的并行加速仅取决于解集的几何性质(组件的数量,它们的尺寸和度);这些算法不随处理器数量的增加而扩展。为了管理组件级并行化的不规则性,我们组合了不同的并发模式,即工作堆、生产者-消费者和fork/join。我们在免费提供的BPAS库中报告我们的实现。在12核机器上对数千个多项式系统进行实验,得到的示例速度提高了9.5倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信