Analysis of distributed parameter estimation in WSN with unreliable nodes

Amanda Souza de Paula, C. Panazio
{"title":"Analysis of distributed parameter estimation in WSN with unreliable nodes","authors":"Amanda Souza de Paula, C. Panazio","doi":"10.1109/ISWCS.2012.6328341","DOIUrl":null,"url":null,"abstract":"In this article we analyze the diffusion normalized least mean square (NLMS) and its set-membership version (SM-NLMS) diffusion algorithms in a scenario where sensor nodes are subjected to different noise variances. We show through simulation that the SM-NLMS is a more robust algorithm in such condition, in addition to the provided reduced energy consumption. We also show that, in such context, the reduced feedback SM-NLMS (RF-SM-NLMS) presents a similar performance when compared to the SM-NLMS with an additional energy saving and lower channel occupancy. Moreover, we propose an adaptive way to choose the SM-NLMS and RF-SM-NLMS parameters in order to provide further performance enhancement in the presence of nodes subjected to different noise variances.","PeriodicalId":167119,"journal":{"name":"2012 International Symposium on Wireless Communication Systems (ISWCS)","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 International Symposium on Wireless Communication Systems (ISWCS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISWCS.2012.6328341","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

In this article we analyze the diffusion normalized least mean square (NLMS) and its set-membership version (SM-NLMS) diffusion algorithms in a scenario where sensor nodes are subjected to different noise variances. We show through simulation that the SM-NLMS is a more robust algorithm in such condition, in addition to the provided reduced energy consumption. We also show that, in such context, the reduced feedback SM-NLMS (RF-SM-NLMS) presents a similar performance when compared to the SM-NLMS with an additional energy saving and lower channel occupancy. Moreover, we propose an adaptive way to choose the SM-NLMS and RF-SM-NLMS parameters in order to provide further performance enhancement in the presence of nodes subjected to different noise variances.
具有不可靠节点的WSN分布参数估计分析
在本文中,我们分析了扩散归一化最小均方(NLMS)及其集合隶属度版本(SM-NLMS)在传感器节点受到不同噪声方差的场景中的扩散算法。我们通过仿真表明,SM-NLMS算法在这种情况下具有更强的鲁棒性,并且提供了更低的能耗。我们还表明,在这种情况下,与SM-NLMS相比,减少反馈的SM-NLMS (RF-SM-NLMS)具有相似的性能,并且具有额外的节能和更低的信道占用。此外,我们提出了一种自适应的方法来选择SM-NLMS和RF-SM-NLMS参数,以便在受不同噪声方差影响的节点存在时进一步提高性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信