{"title":"Stochastic nanoscale addressing for logic","authors":"Eric Rachlin, J. Savage","doi":"10.1109/NANOARCH.2010.5510926","DOIUrl":null,"url":null,"abstract":"In this paper we explore the area overhead associated with the stochastic assembly of nanoscale logic. In nanoscale architectures, stochastically assembled nanowire decoders have been proposed as a way of addressing many individual nanowires using as few photolithographically produced mesoscale wires as possible. Previous work has bounded the area of stochastically assembled nanowire decoders for controlling nanowire crossbar-based memories. We extend this analysis to nanowire crossbar-based logic and bound the area required to supply inputs to a nanoscale circuit via mesoscale wires. We also relate our analysis to the area required for stochastically assembled signal-restoration layers within nanowire crossbar-based logic.","PeriodicalId":306717,"journal":{"name":"2010 IEEE/ACM International Symposium on Nanoscale Architectures","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE/ACM International Symposium on Nanoscale Architectures","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NANOARCH.2010.5510926","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper we explore the area overhead associated with the stochastic assembly of nanoscale logic. In nanoscale architectures, stochastically assembled nanowire decoders have been proposed as a way of addressing many individual nanowires using as few photolithographically produced mesoscale wires as possible. Previous work has bounded the area of stochastically assembled nanowire decoders for controlling nanowire crossbar-based memories. We extend this analysis to nanowire crossbar-based logic and bound the area required to supply inputs to a nanoscale circuit via mesoscale wires. We also relate our analysis to the area required for stochastically assembled signal-restoration layers within nanowire crossbar-based logic.