Linear and nonlinear fractional order diffusion equations with initial and bowndary conditions

М. Borikhanov, С. Mambetov
{"title":"Linear and nonlinear fractional order diffusion equations with initial and bowndary conditions","authors":"М. Borikhanov, С. Mambetov","doi":"10.47526/2023-2/2524-0080.03","DOIUrl":null,"url":null,"abstract":"The usual differentiation and integration are expanded to any non-integer order in fractional calculus. The topic predates the development of differential calculus by Leibnitz and Newton and is therefore as old as classical theory. The concept of fractional calculus has generated interest not only among mathematicians but also among physicists and engineers. This concept is calculated in the same way as the classical methods of differential and integral calculus, and also dates back to the time when Leibniz and Newton invented differential calculus. The idea of calculating fractional order is of interest not only among individual mathematicians, but also among physicists and engineers. The method of upper and lower solutions has been extended to FDEs using these minimum-maximum principles, and various existence results have been established. In this paper, a one-dimensional subdiffusion equation is investigated using the principle of the maximum of the Riemann-Liouville derivative of fractional order. It is proved that for fractional order diffusion equations in linear and nonlinear time there is a unique classical solution to the initial boundary value problem and that the solution continuously depends on the initial and boundary conditions.","PeriodicalId":171505,"journal":{"name":"Q A Iasaýı atyndaǵy Halyqaralyq qazaq-túrіk ýnıversıtetіnіń habarlary (fızıka matematıka ınformatıka serııasy)","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Q A Iasaýı atyndaǵy Halyqaralyq qazaq-túrіk ýnıversıtetіnіń habarlary (fızıka matematıka ınformatıka serııasy)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.47526/2023-2/2524-0080.03","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The usual differentiation and integration are expanded to any non-integer order in fractional calculus. The topic predates the development of differential calculus by Leibnitz and Newton and is therefore as old as classical theory. The concept of fractional calculus has generated interest not only among mathematicians but also among physicists and engineers. This concept is calculated in the same way as the classical methods of differential and integral calculus, and also dates back to the time when Leibniz and Newton invented differential calculus. The idea of calculating fractional order is of interest not only among individual mathematicians, but also among physicists and engineers. The method of upper and lower solutions has been extended to FDEs using these minimum-maximum principles, and various existence results have been established. In this paper, a one-dimensional subdiffusion equation is investigated using the principle of the maximum of the Riemann-Liouville derivative of fractional order. It is proved that for fractional order diffusion equations in linear and nonlinear time there is a unique classical solution to the initial boundary value problem and that the solution continuously depends on the initial and boundary conditions.
具有初始和边界条件的线性和非线性分数阶扩散方程
将分数阶微积分中常用的微分和积分推广到任意非整数阶。这个话题早于莱布尼茨和牛顿的微分学的发展,因此和经典理论一样古老。分数微积分的概念不仅引起了数学家的兴趣,而且引起了物理学家和工程师的兴趣。这个概念的计算方法与微分和积分的经典方法相同,也可以追溯到莱布尼茨和牛顿发明微分的时候。计算分数阶的思想不仅引起数学家个人的兴趣,而且引起物理学家和工程师的兴趣。利用这些极小-极大原理,将上下解的方法推广到微分方程,得到了各种存在性结果。本文利用分数阶Riemann-Liouville导数的极大值原理,研究了一类一维次扩散方程。证明了线性和非线性时间分数阶扩散方程的初始边值问题存在唯一经典解,且解连续依赖于初始条件和边界条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信