An Improved Method for Generation of Multiple Uncorrelated Rayleigh Fading Waveforms

Huo Kai, Cui Chen
{"title":"An Improved Method for Generation of Multiple Uncorrelated Rayleigh Fading Waveforms","authors":"Huo Kai, Cui Chen","doi":"10.1109/CMC.2010.62","DOIUrl":null,"url":null,"abstract":"In this paper, an improved parameter computation method is proposed for generation of multiple uncorrelated Rayleigh fading waveforms. The improved method employs random Doppler frequency wobble for all individual sinusoids based on the original Exact Doppler Spread Method (MEDS), and when the random wobble amplitude is set to be an infinitesimal real value, the autocorrelation (ACF) of inphase (quadrature) components will converge to the ones of reference model exactly. Due to the ACF arithmetic errors of the inphase and quadrature components compensate each other over a determined domain, the ACF of complex waveforms almost the same to the generalized method of MEDS (GMEDS) but with random Doppler frequencies. Simulation results show that the proposed method is useful for the design of simulation models for diversity-combined fading channels, frequency-selective channels, and multiple-input multiple-output (MIMO) channels, moreover, it has close-form and simple expression for model parameters and can be directly used to simulating multiple uncorrelated Rayleigh fading waveforms with low model complexity and low computation costs.","PeriodicalId":296445,"journal":{"name":"2010 International Conference on Communications and Mobile Computing","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 International Conference on Communications and Mobile Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CMC.2010.62","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In this paper, an improved parameter computation method is proposed for generation of multiple uncorrelated Rayleigh fading waveforms. The improved method employs random Doppler frequency wobble for all individual sinusoids based on the original Exact Doppler Spread Method (MEDS), and when the random wobble amplitude is set to be an infinitesimal real value, the autocorrelation (ACF) of inphase (quadrature) components will converge to the ones of reference model exactly. Due to the ACF arithmetic errors of the inphase and quadrature components compensate each other over a determined domain, the ACF of complex waveforms almost the same to the generalized method of MEDS (GMEDS) but with random Doppler frequencies. Simulation results show that the proposed method is useful for the design of simulation models for diversity-combined fading channels, frequency-selective channels, and multiple-input multiple-output (MIMO) channels, moreover, it has close-form and simple expression for model parameters and can be directly used to simulating multiple uncorrelated Rayleigh fading waveforms with low model complexity and low computation costs.
一种改进的多不相关瑞利衰落波形生成方法
本文提出了一种改进的参数计算方法,用于产生多个不相关瑞利衰落波形。改进方法在原有精确多普勒扩频法(MEDS)的基础上,对单个正弦波进行随机多普勒频率振荡,当随机振荡幅值设为无穷小实值时,相位(正交)分量的自相关(ACF)会精确收敛于参考模型的自相关(ACF)。由于相位分量和正交分量的ACF算法误差在一定的范围内相互补偿,复波形的ACF与广义的MEDS方法(GMEDS)几乎相同,但多普勒频率是随机的。仿真结果表明,该方法可用于分集组合衰落信道、频率选择信道和多输入多输出(MIMO)信道的仿真模型设计,模型参数形式接近,表达式简单,可直接用于模拟多个不相关的瑞利衰落波形,模型复杂度低,计算成本低。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信