Tumor classification via a simultaneous structure sparse representation model

Yafeng Li
{"title":"Tumor classification via a simultaneous structure sparse representation model","authors":"Yafeng Li","doi":"10.1109/BMEI.2013.6747005","DOIUrl":null,"url":null,"abstract":"Cancer diagnosis is an important clinical application of gene expression microarray technology. This paper proposes a new model for tumor classification. The key idea is to implement the similar joint decomposition approach in the context of sparse coding with subsequences of gene expression data (SGED). Based on this idea, we formulate a simultaneous structure sparse model for tumor classification. Finally, experimental results in five tumor gene expression datasets show that the proposed method outperforms sparse representation method.","PeriodicalId":163211,"journal":{"name":"2013 6th International Conference on Biomedical Engineering and Informatics","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 6th International Conference on Biomedical Engineering and Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BMEI.2013.6747005","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Cancer diagnosis is an important clinical application of gene expression microarray technology. This paper proposes a new model for tumor classification. The key idea is to implement the similar joint decomposition approach in the context of sparse coding with subsequences of gene expression data (SGED). Based on this idea, we formulate a simultaneous structure sparse model for tumor classification. Finally, experimental results in five tumor gene expression datasets show that the proposed method outperforms sparse representation method.
基于同步结构稀疏表示模型的肿瘤分类
基因表达芯片技术是癌症诊断的重要临床应用。本文提出了一种新的肿瘤分类模型。关键思想是在基因表达数据子序列(SGED)稀疏编码背景下实现类似的联合分解方法。基于这一思想,我们建立了一个用于肿瘤分类的同步结构稀疏模型。最后,在5个肿瘤基因表达数据集上的实验结果表明,该方法优于稀疏表示方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信