An Agent-based Evolutionary Search for Dynamic Travelling Salesman Problem

Wang Dazhi, Li Shixin
{"title":"An Agent-based Evolutionary Search for Dynamic Travelling Salesman Problem","authors":"Wang Dazhi, Li Shixin","doi":"10.1109/ICIE.2010.34","DOIUrl":null,"url":null,"abstract":"This paper presents an agent-based evolutionary search algorithm (AES) for solving dynamic travelling salesman problem (DTSP). The proposed algorithm uses the principal of collaborative endeavor learning mechanism in which all the agents within the current population co-evolve to track dynamic optima. Moreover, a local updating rule which is much the same of permutation enforcement learning scheme is induced for diversity maintaining in dynamic environments. The developed search algorithm and benchmark generator are then built to test the evolutionary model for dynamic versions of travelling salesman problem. Experimental results demonstrate that the proposed method is effective on dynamic problems and have a great potential for other dynamic combinatorial optimization problems as well.","PeriodicalId":353239,"journal":{"name":"2010 WASE International Conference on Information Engineering","volume":"52 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 WASE International Conference on Information Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIE.2010.34","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

Abstract

This paper presents an agent-based evolutionary search algorithm (AES) for solving dynamic travelling salesman problem (DTSP). The proposed algorithm uses the principal of collaborative endeavor learning mechanism in which all the agents within the current population co-evolve to track dynamic optima. Moreover, a local updating rule which is much the same of permutation enforcement learning scheme is induced for diversity maintaining in dynamic environments. The developed search algorithm and benchmark generator are then built to test the evolutionary model for dynamic versions of travelling salesman problem. Experimental results demonstrate that the proposed method is effective on dynamic problems and have a great potential for other dynamic combinatorial optimization problems as well.
动态旅行商问题的基于agent的进化搜索
提出了一种求解动态旅行商问题的基于智能体的进化搜索算法(AES)。该算法利用协同努力学习机制的原理,使当前种群中的所有智能体共同进化,跟踪动态最优。在此基础上,提出了一种与置换强制学习方案相似的局部更新规则,用于动态环境下的多样性维护。建立了搜索算法和基准生成器,对动态版本旅行商问题的进化模型进行了测试。实验结果表明,该方法对动态组合优化问题是有效的,对其他动态组合优化问题也有很大的应用潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信