Alternative proofs of Mandrekar’s theorem

Linus Bergqvist
{"title":"Alternative proofs of Mandrekar’s theorem","authors":"Linus Bergqvist","doi":"10.1090/bproc/156","DOIUrl":null,"url":null,"abstract":"We present two alternative proofs of Mandrekar’s theorem, which states that an invariant subspace of the Hardy space on the bidisc is of Beurling type precisely when the shifts satisfy a doubly commuting condition [Proc. Amer. Math. Soc. 103 (1988), pp. 145–148]. The first proof uses properties of Toeplitz operators to derive a formula for the reproducing kernel of certain shift invariant subspaces, which can then be used to characterize them. The second proof relies on the reproducing property in order to show that the reproducing kernel at the origin must generate the entire shift invariant subspace.","PeriodicalId":106316,"journal":{"name":"Proceedings of the American Mathematical Society, Series B","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the American Mathematical Society, Series B","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/bproc/156","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We present two alternative proofs of Mandrekar’s theorem, which states that an invariant subspace of the Hardy space on the bidisc is of Beurling type precisely when the shifts satisfy a doubly commuting condition [Proc. Amer. Math. Soc. 103 (1988), pp. 145–148]. The first proof uses properties of Toeplitz operators to derive a formula for the reproducing kernel of certain shift invariant subspaces, which can then be used to characterize them. The second proof relies on the reproducing property in order to show that the reproducing kernel at the origin must generate the entire shift invariant subspace.
Mandrekar定理的其他证明
本文给出了Mandrekar定理的两种替代证明,该定理表明,当位移满足双交换条件时,Hardy空间的不变子空间是Beurling型的。数学。《社会法学》(1988),第145-148页。第一个证明利用Toeplitz算子的性质推导出了一个移不变子空间的再现核的公式,然后用它来表征它们。第二个证明依赖于再现性,以证明在原点处的再现核必须生成整个移位不变量子空间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.60
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信