Simulation knowledge extraction and reuse in constrained random processor verification

Wen Chen, Li-C. Wang, J. Bhadra, M. Abadir
{"title":"Simulation knowledge extraction and reuse in constrained random processor verification","authors":"Wen Chen, Li-C. Wang, J. Bhadra, M. Abadir","doi":"10.1145/2463209.2488881","DOIUrl":null,"url":null,"abstract":"This work proposes a methodology of knowledge extraction from constrained-random simulation data. Feature-based analysis is employed to extract rules describing the unique properties of novel assembly programs hitting special conditions. The knowledge learned can be reused to guide constrained-random test generation towards uncovered corners. The experiments are conducted based on the verification environment of a commercial processor design, in parallel with the on-going verification efforts. The experimental results show that by leveraging the knowledge extracted from constrained-random simulation, we can improve the test templates to activate the assertions that otherwise are difficult to activate by extensive simulation.","PeriodicalId":320207,"journal":{"name":"2013 50th ACM/EDAC/IEEE Design Automation Conference (DAC)","volume":"183 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"25","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 50th ACM/EDAC/IEEE Design Automation Conference (DAC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2463209.2488881","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 25

Abstract

This work proposes a methodology of knowledge extraction from constrained-random simulation data. Feature-based analysis is employed to extract rules describing the unique properties of novel assembly programs hitting special conditions. The knowledge learned can be reused to guide constrained-random test generation towards uncovered corners. The experiments are conducted based on the verification environment of a commercial processor design, in parallel with the on-going verification efforts. The experimental results show that by leveraging the knowledge extracted from constrained-random simulation, we can improve the test templates to activate the assertions that otherwise are difficult to activate by extensive simulation.
约束随机处理器验证中的仿真知识提取与重用
本文提出了一种从约束随机仿真数据中提取知识的方法。采用基于特征的分析方法提取符合特殊条件的新型装配程序的独特特性的规则。学习到的知识可以被重用,以指导约束随机测试生成到未覆盖的角。实验是基于商业处理器设计的验证环境进行的,与正在进行的验证工作并行。实验结果表明,通过利用从约束随机模拟中提取的知识,我们可以改进测试模板来激活断言,否则通过广泛的模拟很难激活断言。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信