{"title":"Simulation knowledge extraction and reuse in constrained random processor verification","authors":"Wen Chen, Li-C. Wang, J. Bhadra, M. Abadir","doi":"10.1145/2463209.2488881","DOIUrl":null,"url":null,"abstract":"This work proposes a methodology of knowledge extraction from constrained-random simulation data. Feature-based analysis is employed to extract rules describing the unique properties of novel assembly programs hitting special conditions. The knowledge learned can be reused to guide constrained-random test generation towards uncovered corners. The experiments are conducted based on the verification environment of a commercial processor design, in parallel with the on-going verification efforts. The experimental results show that by leveraging the knowledge extracted from constrained-random simulation, we can improve the test templates to activate the assertions that otherwise are difficult to activate by extensive simulation.","PeriodicalId":320207,"journal":{"name":"2013 50th ACM/EDAC/IEEE Design Automation Conference (DAC)","volume":"183 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"25","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 50th ACM/EDAC/IEEE Design Automation Conference (DAC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2463209.2488881","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 25
Abstract
This work proposes a methodology of knowledge extraction from constrained-random simulation data. Feature-based analysis is employed to extract rules describing the unique properties of novel assembly programs hitting special conditions. The knowledge learned can be reused to guide constrained-random test generation towards uncovered corners. The experiments are conducted based on the verification environment of a commercial processor design, in parallel with the on-going verification efforts. The experimental results show that by leveraging the knowledge extracted from constrained-random simulation, we can improve the test templates to activate the assertions that otherwise are difficult to activate by extensive simulation.