Learning Affective Language and Its Application

Guanhong Zhang, Odbal
{"title":"Learning Affective Language and Its Application","authors":"Guanhong Zhang, Odbal","doi":"10.1109/ICIM49319.2020.244696","DOIUrl":null,"url":null,"abstract":"Affective in natural language refers to aspects of language used to express opinions, emotions, and beliefs. There are numerous natural language processing applications for which affective analysis is relevant, including online chat, news comment, predicting of the stock market and tracking customers’ emotion states. The goal of this work is learning affective language from corpora and using this knowledge for affective analysis. Clues of affective are generated and tested, including unique words, collocations based on dependency grammar, and composition feature using distributional semantic models. The clues, generated from different data sets using different procedures, then the clues are used to perform affective analysis to demonstrate the utility of the knowledge acquired in this paper.","PeriodicalId":129517,"journal":{"name":"2020 6th International Conference on Information Management (ICIM)","volume":"183 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 6th International Conference on Information Management (ICIM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIM49319.2020.244696","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Affective in natural language refers to aspects of language used to express opinions, emotions, and beliefs. There are numerous natural language processing applications for which affective analysis is relevant, including online chat, news comment, predicting of the stock market and tracking customers’ emotion states. The goal of this work is learning affective language from corpora and using this knowledge for affective analysis. Clues of affective are generated and tested, including unique words, collocations based on dependency grammar, and composition feature using distributional semantic models. The clues, generated from different data sets using different procedures, then the clues are used to perform affective analysis to demonstrate the utility of the knowledge acquired in this paper.
情感语言的学习及其应用
自然语言中的情感是指用来表达观点、情感和信仰的语言方面。有许多自然语言处理应用与情感分析相关,包括在线聊天、新闻评论、预测股票市场和跟踪客户的情绪状态。这项工作的目标是从语料库中学习情感语言,并利用这些知识进行情感分析。生成并测试了情感线索,包括独特的单词、基于依赖语法的搭配以及使用分布语义模型的组合特征。通过使用不同的程序从不同的数据集生成线索,然后使用这些线索进行情感分析,以证明本文所获得知识的实用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信