On the parametrization of linear systems with given cyclic structure

L. Baratchart
{"title":"On the parametrization of linear systems with given cyclic structure","authors":"L. Baratchart","doi":"10.1109/CDC.1984.272314","DOIUrl":null,"url":null,"abstract":"Let Sn be the manifold of linear constant systems over R, with m inputs, p outputs, and n-dimensional state space. In this paper, we are concerned with the subset Sn,l of Sn, consisting in systems whose cyclic structure is l. It is first stated to be a submanifold of Sn, and an atlas is given for it. When l ranges over all cyclic structures, (Sn,l) is a partition of Sn, one element of which is open (and dense), namely the submanifold of cyclic systems. We then introduce special factorizations for transfer functions, which allow us to give another parametrization for Sn,l, in particular, transfer functions of cyclic systems admit a rather simple description. As this paper is a shortened version of [2], most proofs are omitted.","PeriodicalId":269680,"journal":{"name":"The 23rd IEEE Conference on Decision and Control","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1984-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The 23rd IEEE Conference on Decision and Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CDC.1984.272314","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Let Sn be the manifold of linear constant systems over R, with m inputs, p outputs, and n-dimensional state space. In this paper, we are concerned with the subset Sn,l of Sn, consisting in systems whose cyclic structure is l. It is first stated to be a submanifold of Sn, and an atlas is given for it. When l ranges over all cyclic structures, (Sn,l) is a partition of Sn, one element of which is open (and dense), namely the submanifold of cyclic systems. We then introduce special factorizations for transfer functions, which allow us to give another parametrization for Sn,l, in particular, transfer functions of cyclic systems admit a rather simple description. As this paper is a shortened version of [2], most proofs are omitted.
给定循环结构线性系统的参数化问题
设Sn为R上线性常数系统的流形,有m个输入,p个输出,n维状态空间。本文研究了Sn的子集Sn,l,它由循环结构为l的系统组成,首先将其描述为Sn的子流形,并给出了它的图谱。当l覆盖所有循环结构时,(Sn,l)是Sn的一个划分,其中一个元素是开(密)的,即循环系统的子流形。然后,我们引入了传递函数的特殊分解,使我们能够给出Sn,l的另一种参数化,特别是,循环系统的传递函数允许相当简单的描述。由于本文是[2]的缩略版,因此省略了大部分证明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信