UTBB FD-SOI Circuit Design using Multifinger Transistors: A Circuit-Device Interaction Perspective

A. Sharma, N. Alam, B. Anand
{"title":"UTBB FD-SOI Circuit Design using Multifinger Transistors: A Circuit-Device Interaction Perspective","authors":"A. Sharma, N. Alam, B. Anand","doi":"10.1109/PRIME.2018.8430312","DOIUrl":null,"url":null,"abstract":"This paper examines and models the performance of mlutifinger Ultra-Thin Box and Body Fully-Depleted (UTBBFD-SOI) MOSFETs in the presence of process induced mechani- cal stress. We model the channel stress and effective drive current $(I_{eff})$ in a multifinger FDSOI MOSFET (Si channel NMOS and SiGe channel PMOS) as a function of number of fingers (NFs). The proposed $I_{eff}$ model predicts the performance (i.e., $I_{\\mathrm {e}ff})$ of Inverter/NAND-2/NAND-3 with a maximum error of 7% compared to Sentaurus TCAD simulations. We show that as the NFs in an NMOSFET increases from 1 to 12, $I_{\\mathrm {e}ff}$ per micrometer width increases by $\\approx ~36$% and subsequently saturates. This is due to the increase in the channel stress with the NFs, which is similar to as observed in the bulk-CMOS technology. However, due to high biaxial stress, a PMOSFET’s (SiGe channel) performance changes only marginally with the NFs. This is because the improvement in hole mobility saturates at high biaxial stress values. We also show that the FO4 delay of an inverter reduces by 16.67% when twelve-finger devices are used to design the inverter rather than single finger devices. Finally, using our stress model and $I_{eff}$ for an inverter$/\\mathrm {N}\\mathrm {A}\\mathrm {N}\\mathrm {D}/\\mathrm {N}\\mathrm {O}\\mathrm {R}$ cells, we propose a modified logical effort methodology (LEM) for combinational data-paths which incorporates multifinger effects in FDSOI MOSFETs. A 5-stage data-path designed using our LEM results in 14.3% improvement in total active area and 7% reduction in leakage power without a loss in speed compared to conventional technique.","PeriodicalId":384458,"journal":{"name":"2018 14th Conference on Ph.D. Research in Microelectronics and Electronics (PRIME)","volume":"183 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 14th Conference on Ph.D. Research in Microelectronics and Electronics (PRIME)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PRIME.2018.8430312","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper examines and models the performance of mlutifinger Ultra-Thin Box and Body Fully-Depleted (UTBBFD-SOI) MOSFETs in the presence of process induced mechani- cal stress. We model the channel stress and effective drive current $(I_{eff})$ in a multifinger FDSOI MOSFET (Si channel NMOS and SiGe channel PMOS) as a function of number of fingers (NFs). The proposed $I_{eff}$ model predicts the performance (i.e., $I_{\mathrm {e}ff})$ of Inverter/NAND-2/NAND-3 with a maximum error of 7% compared to Sentaurus TCAD simulations. We show that as the NFs in an NMOSFET increases from 1 to 12, $I_{\mathrm {e}ff}$ per micrometer width increases by $\approx ~36$% and subsequently saturates. This is due to the increase in the channel stress with the NFs, which is similar to as observed in the bulk-CMOS technology. However, due to high biaxial stress, a PMOSFET’s (SiGe channel) performance changes only marginally with the NFs. This is because the improvement in hole mobility saturates at high biaxial stress values. We also show that the FO4 delay of an inverter reduces by 16.67% when twelve-finger devices are used to design the inverter rather than single finger devices. Finally, using our stress model and $I_{eff}$ for an inverter$/\mathrm {N}\mathrm {A}\mathrm {N}\mathrm {D}/\mathrm {N}\mathrm {O}\mathrm {R}$ cells, we propose a modified logical effort methodology (LEM) for combinational data-paths which incorporates multifinger effects in FDSOI MOSFETs. A 5-stage data-path designed using our LEM results in 14.3% improvement in total active area and 7% reduction in leakage power without a loss in speed compared to conventional technique.
使用多指晶体管的UTBB FD-SOI电路设计:电路-器件交互视角
本文研究了多指超薄盒体全耗尽(UTBBFD-SOI) mosfet在工艺诱发机械应力下的性能并建立了模型。我们将多指FDSOI MOSFET (Si沟道NMOS和SiGe沟道PMOS)中的沟道应力和有效驱动电流$(I_{eff})$建模为指数(NFs)的函数。所提出的$I_{eff}$模型预测了逆变器/NAND-2/NAND-3的性能(即$I_{\ maththrm {e}ff})$,与Sentaurus TCAD仿真相比,最大误差为7%。我们发现,当NMOSFET中的NFs从1增加到12时,每微米宽度$I_{\mathrm {e}ff}$增加$\ \约$ 36%并随后饱和。这是由于NFs的通道应力增加,这与在块体cmos技术中观察到的相似。然而,由于高双轴应力,PMOSFET (SiGe通道)的性能仅随NFs的变化而略有变化。这是因为在高双轴应力值下,井眼迁移率的提高达到饱和状态。我们还表明,当使用十二指器件而不是单指器件来设计逆变器时,逆变器的FO4延迟降低了16.67%。最后,利用我们的应力模型和逆变器$/\ mathm {N}\ mathm {A}\ mathm {N}\ mathm {D}/\ mathm {N}\ mathm {O}\ mathm {R}$单元的$I_{eff}$,我们提出了一种改进的逻辑努力方法(LEM),用于FDSOI mosfet中包含多指效应的组合数据路径。采用LEM设计的5级数据路径与传统技术相比,总有效面积提高了14.3%,泄漏功率降低了7%,而速度没有下降。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信